Appendix B: Bit-Vector Compression Algorithm

(As used in CONCORD.IDX and VERSES.IDX)

Source of Algorithm

Dr. James Sneeringer of NavPress Software supplied a technical paper which details the algorithm serving as the basis for the compression of some entries in CONCORD.IDX and VERSES.IDX. The descriptions of the data in these files include references to parameters to this algorithm.

This technical paper is entitled:

Technical Report 91/21

Coding for Compression in Full-Text Retrieval Systems

Alistair Moffat, Justin Zobel

November 1991

This article was first published in the following.

Proceedings, 2nd IEEE Data Compression Conference

Edited by J.A. Storer and M. Cohn

Published by IEEE Computer Society Press, Los Alamitos, CA

March, 1992, pages 72-91

It is also available in the following works.

Data Compression in Full-Text Retrieval Systems. Bell, T. C.; Moffat, A.; Nevill-Manning, C. G.; Witten, I. H.; Zobel, J. Journal of the American Society for Information Science, volume 44 number 9, October 1993, pages 508-531.

Managing Gigabytes: Compressing and Indexing Documents and Images. Witten, I. H.; Moffat, A.; and Bell, T. C. Van Nostrand Reinhold, publisher. New York, NY, 1994.

Essential Code Functions

In the code sample that follows, it is assumed that an appropriate class exists to serve as a source and destination for compressed bits. The IOClass class provides GetBit and PutBit functions that read and write one bit, respectively, from and to the file.

To use the class, call Initialize with values for p and N as described in the sections of the specification which use this compression method. The Encode function encodes an integer using the values of p and N supplied to Initialize. Decode returns the next integer from the input bitstream, again using p and N as provided to Initialize.

template <class IOClass>

class ValueEncoderDecoder

 {
public:

 ValueEncoderDecoder()

 {

 m_N = 0;

 m_p = 0;

 m_b = 0;

 m_logB = 0;

 m_threshold = 0;

 m_pBitIO = NULL;

 }
 void Initialize(UINT p, UINT N, IOClass& bitIO)

 {

 ASSERT(p != 0);

 m_p = p;
 m_N = N;

 m_pBitIO = &bitIO;

 // Calculate m_b = .69 (m_N / m_p)

 m_b = MulDiv(69, m_N, 100) / m_p;

 if (m_b == 0)

 m_b = 1;

 // Ceiling(log2(b)) is the highest bit on for b + (b - 1)

 UINT roundB = m_b + (m_b - 1);

 // Clear out all but the top bit of roundB

 UINT mask = 1;

 m_logB = 0;

 while (roundB != 0)

 {

 roundB &= ~mask;

 mask <<= 1;

 m_logB++;

 }

 // The highest bit was mask >> 1

 roundB = mask >> 1;

 m_logB--;

 m_threshold = roundB - m_b;

 }

 void Encode(UINT value)

 {

 // Check if initialize has been called

 ASSERT(m_pBitIO != NULL);

 ASSERT(value > 0);

 if (value == 0)

 return;

 value--;

 while (value >= m_b)

 {

 m_pBitIO->PutBit(1);

 value -= m_b;

 }

 m_pBitIO->PutBit(0);

 UINT nBits;

 if (value < m_threshold)

 {

 nBits = m_logB - 1;

 }

 else

 {

 nBits = m_logB;

 value += m_threshold;

 }

 for (int iBits = nBits - 1; iBits >= 0; iBits--)

 m_pBitIO->PutBit((value>>iBits) & 1);

 }

 UINT Decode()

 {

 // Check if initialize has been called

 ASSERT(m_pBitIO != NULL);

 UINT x = 0, v = 0;

 while (m_pBitIO->GetBit())

 x += m_b;

 for (int i = m_logB - 2; i >= 0; i--)

 v = 2*v + m_pBitIO->GetBit();

 if ((v >= m_threshold) && (m_b > 1))

 {

 v = 2*v + m_pBitIO->GetBit();

 v = v - m_threshold;

 }

 return x + v + 1;

 }

private:

 UINT m_N;

 UINT m_p;

 UINT m_b;

 UINT m_logB;

 UINT m_threshold;

 IOClass* m_pBitIO;

 };

