[sword-svn] r2487 - in trunk: include src/utilfuns

chrislit at crosswire.org chrislit at crosswire.org
Tue Dec 8 00:18:00 MST 2009


Author: chrislit
Date: 2009-12-08 00:18:00 -0700 (Tue, 08 Dec 2009)
New Revision: 2487

Removed:
   trunk/src/utilfuns/regcomp.c
   trunk/src/utilfuns/regex_internal.c
   trunk/src/utilfuns/regex_internal.h
   trunk/src/utilfuns/regexec.c
Modified:
   trunk/include/regex.h
   trunk/src/utilfuns/regex.c
Log:
reverting GNU regex to old version


Modified: trunk/include/regex.h
===================================================================
--- trunk/include/regex.h	2009-12-07 04:02:43 UTC (rev 2486)
+++ trunk/include/regex.h	2009-12-08 07:18:00 UTC (rev 2487)
@@ -1,63 +1,72 @@
 /* Definitions for data structures and routines for the regular
-   expression library.
-   Copyright (C) 1985,1989-93,1995-98,2000,2001,2002,2003,2005,2006,2008
-   Free Software Foundation, Inc.
-   This file is part of the GNU C Library.
+   expression library, version 0.12.
+   Copyright (C) 1985,89,90,91,92,93,95,96,97 Free Software Foundation, Inc.
 
-   The GNU C Library is free software; you can redistribute it and/or
-   modify it under the terms of the GNU Lesser General Public
-   License as published by the Free Software Foundation; either
-   version 2.1 of the License, or (at your option) any later version.
+   the C library, however.  The master source lives in /gd/gnu/lib.
 
-   The GNU C Library is distributed in the hope that it will be useful,
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-   Lesser General Public License for more details.
+NOTE: The canonical source of this file is maintained with the 
+GNU C Library.  Bugs can be reported to bug-glibc at prep.ai.mit.edu.
 
-   You should have received a copy of the GNU Lesser General Public
-   License along with the GNU C Library; if not, write to the Free
-   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
-   02111-1307 USA.  */
+This program is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 2, or (at your option) any
+later version.
 
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software Foundation, 
+Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
+
 #ifndef _REGEX_H
 #define _REGEX_H 1
 
-#include <sys/types.h>
-
 /* Allow the use in C++ code.  */
 #ifdef __cplusplus
-extern "C" {
+extern "C"
+{
 #endif
 
+/* POSIX says that <sys/types.h> must be included (by the caller) before
+   <regex.h>.  */
+
+#if !defined (_POSIX_C_SOURCE) && !defined (_POSIX_SOURCE) && defined (VMS)
+/* VMS doesn't have `size_t' in <sys/types.h>, even though POSIX says it
+   should be there.  */
+#include <stddef.h>
+#endif
+
 /* The following two types have to be signed and unsigned integer type
    wide enough to hold a value of a pointer.  For most ANSI compilers
    ptrdiff_t and size_t should be likely OK.  Still size of these two
    types is 2 for Microsoft C.  Ugh... */
-typedef long int s_reg_t;
-typedef unsigned long int active_reg_t;
+  typedef long int s_reg_t;
+  typedef unsigned long int active_reg_t;
 
 /* The following bits are used to determine the regexp syntax we
    recognize.  The set/not-set meanings are chosen so that Emacs syntax
    remains the value 0.  The bits are given in alphabetical order, and
    the definitions shifted by one from the previous bit; thus, when we
    add or remove a bit, only one other definition need change.  */
-typedef unsigned long int reg_syntax_t;
+  typedef unsigned long int reg_syntax_t;
 
-#ifdef __USE_GNU
 /* If this bit is not set, then \ inside a bracket expression is literal.
    If set, then such a \ quotes the following character.  */
-# define RE_BACKSLASH_ESCAPE_IN_LISTS ((unsigned long int) 1)
+#define RE_BACKSLASH_ESCAPE_IN_LISTS ((unsigned long int) 1)
 
 /* If this bit is not set, then + and ? are operators, and \+ and \? are
      literals.
    If set, then \+ and \? are operators and + and ? are literals.  */
-# define RE_BK_PLUS_QM (RE_BACKSLASH_ESCAPE_IN_LISTS << 1)
+#define RE_BK_PLUS_QM (RE_BACKSLASH_ESCAPE_IN_LISTS << 1)
 
 /* If this bit is set, then character classes are supported.  They are:
      [:alpha:], [:upper:], [:lower:],  [:digit:], [:alnum:], [:xdigit:],
      [:space:], [:print:], [:punct:], [:graph:], and [:cntrl:].
    If not set, then character classes are not supported.  */
-# define RE_CHAR_CLASSES (RE_BK_PLUS_QM << 1)
+#define RE_CHAR_CLASSES (RE_BK_PLUS_QM << 1)
 
 /* If this bit is set, then ^ and $ are always anchors (outside bracket
      expressions, of course).
@@ -71,7 +80,7 @@
    POSIX draft 11.2 says that * etc. in leading positions is undefined.
    We already implemented a previous draft which made those constructs
    invalid, though, so we haven't changed the code back.  */
-# define RE_CONTEXT_INDEP_ANCHORS (RE_CHAR_CLASSES << 1)
+#define RE_CONTEXT_INDEP_ANCHORS (RE_CHAR_CLASSES << 1)
 
 /* If this bit is set, then special characters are always special
      regardless of where they are in the pattern.
@@ -79,71 +88,71 @@
      some contexts; otherwise they are ordinary.  Specifically,
      * + ? and intervals are only special when not after the beginning,
      open-group, or alternation operator.  */
-# define RE_CONTEXT_INDEP_OPS (RE_CONTEXT_INDEP_ANCHORS << 1)
+#define RE_CONTEXT_INDEP_OPS (RE_CONTEXT_INDEP_ANCHORS << 1)
 
 /* If this bit is set, then *, +, ?, and { cannot be first in an re or
      immediately after an alternation or begin-group operator.  */
-# define RE_CONTEXT_INVALID_OPS (RE_CONTEXT_INDEP_OPS << 1)
+#define RE_CONTEXT_INVALID_OPS (RE_CONTEXT_INDEP_OPS << 1)
 
 /* If this bit is set, then . matches newline.
    If not set, then it doesn't.  */
-# define RE_DOT_NEWLINE (RE_CONTEXT_INVALID_OPS << 1)
+#define RE_DOT_NEWLINE (RE_CONTEXT_INVALID_OPS << 1)
 
 /* If this bit is set, then . doesn't match NUL.
    If not set, then it does.  */
-# define RE_DOT_NOT_NULL (RE_DOT_NEWLINE << 1)
+#define RE_DOT_NOT_NULL (RE_DOT_NEWLINE << 1)
 
 /* If this bit is set, nonmatching lists [^...] do not match newline.
    If not set, they do.  */
-# define RE_HAT_LISTS_NOT_NEWLINE (RE_DOT_NOT_NULL << 1)
+#define RE_HAT_LISTS_NOT_NEWLINE (RE_DOT_NOT_NULL << 1)
 
 /* If this bit is set, either \{...\} or {...} defines an
      interval, depending on RE_NO_BK_BRACES.
    If not set, \{, \}, {, and } are literals.  */
-# define RE_INTERVALS (RE_HAT_LISTS_NOT_NEWLINE << 1)
+#define RE_INTERVALS (RE_HAT_LISTS_NOT_NEWLINE << 1)
 
 /* If this bit is set, +, ? and | aren't recognized as operators.
    If not set, they are.  */
-# define RE_LIMITED_OPS (RE_INTERVALS << 1)
+#define RE_LIMITED_OPS (RE_INTERVALS << 1)
 
 /* If this bit is set, newline is an alternation operator.
    If not set, newline is literal.  */
-# define RE_NEWLINE_ALT (RE_LIMITED_OPS << 1)
+#define RE_NEWLINE_ALT (RE_LIMITED_OPS << 1)
 
 /* If this bit is set, then `{...}' defines an interval, and \{ and \}
      are literals.
   If not set, then `\{...\}' defines an interval.  */
-# define RE_NO_BK_BRACES (RE_NEWLINE_ALT << 1)
+#define RE_NO_BK_BRACES (RE_NEWLINE_ALT << 1)
 
 /* If this bit is set, (...) defines a group, and \( and \) are literals.
    If not set, \(...\) defines a group, and ( and ) are literals.  */
-# define RE_NO_BK_PARENS (RE_NO_BK_BRACES << 1)
+#define RE_NO_BK_PARENS (RE_NO_BK_BRACES << 1)
 
 /* If this bit is set, then \<digit> matches <digit>.
    If not set, then \<digit> is a back-reference.  */
-# define RE_NO_BK_REFS (RE_NO_BK_PARENS << 1)
+#define RE_NO_BK_REFS (RE_NO_BK_PARENS << 1)
 
 /* If this bit is set, then | is an alternation operator, and \| is literal.
    If not set, then \| is an alternation operator, and | is literal.  */
-# define RE_NO_BK_VBAR (RE_NO_BK_REFS << 1)
+#define RE_NO_BK_VBAR (RE_NO_BK_REFS << 1)
 
 /* If this bit is set, then an ending range point collating higher
      than the starting range point, as in [z-a], is invalid.
    If not set, then when ending range point collates higher than the
      starting range point, the range is ignored.  */
-# define RE_NO_EMPTY_RANGES (RE_NO_BK_VBAR << 1)
+#define RE_NO_EMPTY_RANGES (RE_NO_BK_VBAR << 1)
 
 /* If this bit is set, then an unmatched ) is ordinary.
    If not set, then an unmatched ) is invalid.  */
-# define RE_UNMATCHED_RIGHT_PAREN_ORD (RE_NO_EMPTY_RANGES << 1)
+#define RE_UNMATCHED_RIGHT_PAREN_ORD (RE_NO_EMPTY_RANGES << 1)
 
 /* If this bit is set, succeed as soon as we match the whole pattern,
    without further backtracking.  */
-# define RE_NO_POSIX_BACKTRACKING (RE_UNMATCHED_RIGHT_PAREN_ORD << 1)
+#define RE_NO_POSIX_BACKTRACKING (RE_UNMATCHED_RIGHT_PAREN_ORD << 1)
 
 /* If this bit is set, do not process the GNU regex operators.
    If not set, then the GNU regex operators are recognized. */
-# define RE_NO_GNU_OPS (RE_NO_POSIX_BACKTRACKING << 1)
+#define RE_NO_GNU_OPS (RE_NO_POSIX_BACKTRACKING << 1)
 
 /* If this bit is set, turn on internal regex debugging.
    If not set, and debugging was on, turn it off.
@@ -151,38 +160,14 @@
    We define this bit always, so that all that's needed to turn on
    debugging is to recompile regex.c; the calling code can always have
    this bit set, and it won't affect anything in the normal case. */
-# define RE_DEBUG (RE_NO_GNU_OPS << 1)
+#define RE_DEBUG (RE_NO_GNU_OPS << 1)
 
-/* If this bit is set, a syntactically invalid interval is treated as
-   a string of ordinary characters.  For example, the ERE 'a{1' is
-   treated as 'a\{1'.  */
-# define RE_INVALID_INTERVAL_ORD (RE_DEBUG << 1)
-
-/* If this bit is set, then ignore case when matching.
-   If not set, then case is significant.  */
-# define RE_ICASE (RE_INVALID_INTERVAL_ORD << 1)
-
-/* This bit is used internally like RE_CONTEXT_INDEP_ANCHORS but only
-   for ^, because it is difficult to scan the regex backwards to find
-   whether ^ should be special.  */
-# define RE_CARET_ANCHORS_HERE (RE_ICASE << 1)
-
-/* If this bit is set, then \{ cannot be first in an bre or
-   immediately after an alternation or begin-group operator.  */
-# define RE_CONTEXT_INVALID_DUP (RE_CARET_ANCHORS_HERE << 1)
-
-/* If this bit is set, then no_sub will be set to 1 during
-   re_compile_pattern.  */
-# define RE_NO_SUB (RE_CONTEXT_INVALID_DUP << 1)
-#endif
-
 /* This global variable defines the particular regexp syntax to use (for
    some interfaces).  When a regexp is compiled, the syntax used is
    stored in the pattern buffer, so changing this does not affect
    already-compiled regexps.  */
-extern reg_syntax_t re_syntax_options;
+  extern reg_syntax_t re_syntax_options;
 
-#ifdef __USE_GNU
 /* Define combinations of the above bits for the standard possibilities.
    (The [[[ comments delimit what gets put into the Texinfo file, so
    don't delete them!)  */
@@ -198,10 +183,9 @@
 
 #define RE_SYNTAX_GNU_AWK						\
   ((RE_SYNTAX_POSIX_EXTENDED | RE_BACKSLASH_ESCAPE_IN_LISTS | RE_DEBUG)	\
-   & ~(RE_DOT_NOT_NULL | RE_INTERVALS | RE_CONTEXT_INDEP_OPS		\
-       | RE_CONTEXT_INVALID_OPS ))
+   & ~(RE_DOT_NOT_NULL | RE_INTERVALS | RE_CONTEXT_INDEP_OPS))
 
-#define RE_SYNTAX_POSIX_AWK						\
+#define RE_SYNTAX_POSIX_AWK 						\
   (RE_SYNTAX_POSIX_EXTENDED | RE_BACKSLASH_ESCAPE_IN_LISTS		\
    | RE_INTERVALS	    | RE_NO_GNU_OPS)
 
@@ -217,8 +201,7 @@
    | RE_NO_BK_VBAR)
 
 #define RE_SYNTAX_POSIX_EGREP						\
-  (RE_SYNTAX_EGREP | RE_INTERVALS | RE_NO_BK_BRACES			\
-   | RE_INVALID_INTERVAL_ORD)
+  (RE_SYNTAX_EGREP | RE_INTERVALS | RE_NO_BK_BRACES)
 
 /* P1003.2/D11.2, section 4.20.7.1, lines 5078ff.  */
 #define RE_SYNTAX_ED RE_SYNTAX_POSIX_BASIC
@@ -231,7 +214,7 @@
    | RE_INTERVALS  | RE_NO_EMPTY_RANGES)
 
 #define RE_SYNTAX_POSIX_BASIC						\
-  (_RE_SYNTAX_POSIX_COMMON | RE_BK_PLUS_QM | RE_CONTEXT_INVALID_DUP)
+  (_RE_SYNTAX_POSIX_COMMON | RE_BK_PLUS_QM)
 
 /* Differs from ..._POSIX_BASIC only in that RE_BK_PLUS_QM becomes
    RE_LIMITED_OPS, i.e., \? \+ \| are not recognized.  Actually, this
@@ -240,13 +223,13 @@
   (_RE_SYNTAX_POSIX_COMMON | RE_LIMITED_OPS)
 
 #define RE_SYNTAX_POSIX_EXTENDED					\
-  (_RE_SYNTAX_POSIX_COMMON  | RE_CONTEXT_INDEP_ANCHORS			\
-   | RE_CONTEXT_INDEP_OPS   | RE_NO_BK_BRACES				\
-   | RE_NO_BK_PARENS        | RE_NO_BK_VBAR				\
-   | RE_CONTEXT_INVALID_OPS | RE_UNMATCHED_RIGHT_PAREN_ORD)
+  (_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS			\
+   | RE_CONTEXT_INDEP_OPS  | RE_NO_BK_BRACES				\
+   | RE_NO_BK_PARENS       | RE_NO_BK_VBAR				\
+   | RE_UNMATCHED_RIGHT_PAREN_ORD)
 
-/* Differs from ..._POSIX_EXTENDED in that RE_CONTEXT_INDEP_OPS is
-   removed and RE_NO_BK_REFS is added.  */
+/* Differs from ..._POSIX_EXTENDED in that RE_CONTEXT_INVALID_OPS
+   replaces RE_CONTEXT_INDEP_OPS and RE_NO_BK_REFS is added.  */
 #define RE_SYNTAX_POSIX_MINIMAL_EXTENDED				\
   (_RE_SYNTAX_POSIX_COMMON  | RE_CONTEXT_INDEP_ANCHORS			\
    | RE_CONTEXT_INVALID_OPS | RE_NO_BK_BRACES				\
@@ -257,12 +240,11 @@
 /* Maximum number of duplicates an interval can allow.  Some systems
    (erroneously) define this in other header files, but we want our
    value, so remove any previous define.  */
-# ifdef RE_DUP_MAX
-#  undef RE_DUP_MAX
-# endif
-/* If sizeof(int) == 2, then ((1 << 15) - 1) overflows.  */
-# define RE_DUP_MAX (0x7fff)
+#ifdef RE_DUP_MAX
+#undef RE_DUP_MAX
 #endif
+/* If sizeof(int) == 2, then ((1 << 15) - 1) overflows.  */
+#define RE_DUP_MAX (0x7fff)
 
 
 /* POSIX `cflags' bits (i.e., information for `regcomp').  */
@@ -297,42 +279,35 @@
 /* Like REG_NOTBOL, except for the end-of-line.  */
 #define REG_NOTEOL (1 << 1)
 
-/* Use PMATCH[0] to delimit the start and end of the search in the
-   buffer.  */
-#define REG_STARTEND (1 << 2)
 
-
 /* If any error codes are removed, changed, or added, update the
    `re_error_msg' table in regex.c.  */
-typedef enum
-{
-#if defined _XOPEN_SOURCE || defined __USE_XOPEN2K
-  REG_ENOSYS = -1,	/* This will never happen for this implementation.  */
-#endif
+  typedef enum
+  {
+    REG_NOERROR = 0,		/* Success.  */
+    REG_NOMATCH,		/* Didn't find a match (for regexec).  */
 
-  REG_NOERROR = 0,	/* Success.  */
-  REG_NOMATCH,		/* Didn't find a match (for regexec).  */
+    /* POSIX regcomp return error codes.  (In the order listed in the
+       standard.)  */
+    REG_BADPAT,			/* Invalid pattern.  */
+    REG_ECOLLATE,		/* Not implemented.  */
+    REG_ECTYPE,			/* Invalid character class name.  */
+    REG_EESCAPE,		/* Trailing backslash.  */
+    REG_ESUBREG,		/* Invalid back reference.  */
+    REG_EBRACK,			/* Unmatched left bracket.  */
+    REG_EPAREN,			/* Parenthesis imbalance.  */
+    REG_EBRACE,			/* Unmatched \{.  */
+    REG_BADBR,			/* Invalid contents of \{\}.  */
+    REG_ERANGE,			/* Invalid range end.  */
+    REG_ESPACE,			/* Ran out of memory.  */
+    REG_BADRPT,			/* No preceding re for repetition op.  */
 
-  /* POSIX regcomp return error codes.  (In the order listed in the
-     standard.)  */
-  REG_BADPAT,		/* Invalid pattern.  */
-  REG_ECOLLATE,		/* Inalid collating element.  */
-  REG_ECTYPE,		/* Invalid character class name.  */
-  REG_EESCAPE,		/* Trailing backslash.  */
-  REG_ESUBREG,		/* Invalid back reference.  */
-  REG_EBRACK,		/* Unmatched left bracket.  */
-  REG_EPAREN,		/* Parenthesis imbalance.  */
-  REG_EBRACE,		/* Unmatched \{.  */
-  REG_BADBR,		/* Invalid contents of \{\}.  */
-  REG_ERANGE,		/* Invalid range end.  */
-  REG_ESPACE,		/* Ran out of memory.  */
-  REG_BADRPT,		/* No preceding re for repetition op.  */
-
-  /* Error codes we've added.  */
-  REG_EEND,		/* Premature end.  */
-  REG_ESIZE,		/* Compiled pattern bigger than 2^16 bytes.  */
-  REG_ERPAREN		/* Unmatched ) or \); not returned from regcomp.  */
-} reg_errcode_t;
+    /* Error codes we've added.  */
+    REG_EEND,			/* Premature end.  */
+    REG_ESIZE,			/* Compiled pattern bigger than 2^16 bytes.  */
+    REG_ERPAREN			/* Unmatched ) or \); not returned from regcomp.  */
+  }
+  reg_errcode_t;
 
 /* This data structure represents a compiled pattern.  Before calling
    the pattern compiler, the fields `buffer', `allocated', `fastmap',
@@ -341,137 +316,148 @@
    private to the regex routines.  */
 
 #ifndef RE_TRANSLATE_TYPE
-# define __RE_TRANSLATE_TYPE unsigned char *
-# ifdef __USE_GNU
-#  define RE_TRANSLATE_TYPE __RE_TRANSLATE_TYPE
-# endif
+#define RE_TRANSLATE_TYPE char *
 #endif
 
-#ifdef __USE_GNU
-# define __REPB_PREFIX(name) name
-#else
-# define __REPB_PREFIX(name) __##name
-#endif
+  struct re_pattern_buffer
+  {
+/* [[[begin pattern_buffer]]] */
+    /* Space that holds the compiled pattern.  It is declared as
+       `unsigned char *' because its elements are
+       sometimes used as array indexes.  */
+    unsigned char *buffer;
 
-struct re_pattern_buffer
-{
-  /* Space that holds the compiled pattern.  It is declared as
-     `unsigned char *' because its elements are sometimes used as
-     array indexes.  */
-  unsigned char *__REPB_PREFIX(buffer);
+    /* Number of bytes to which `buffer' points.  */
+    unsigned long int allocated;
 
-  /* Number of bytes to which `buffer' points.  */
-  unsigned long int __REPB_PREFIX(allocated);
+    /* Number of bytes actually used in `buffer'.  */
+    unsigned long int used;
 
-  /* Number of bytes actually used in `buffer'.  */
-  unsigned long int __REPB_PREFIX(used);
+    /* Syntax setting with which the pattern was compiled.  */
+    reg_syntax_t syntax;
 
-  /* Syntax setting with which the pattern was compiled.  */
-  reg_syntax_t __REPB_PREFIX(syntax);
+    /* Pointer to a fastmap, if any, otherwise zero.  re_search uses
+       the fastmap, if there is one, to skip over impossible
+       starting points for matches.  */
+    char *fastmap;
 
-  /* Pointer to a fastmap, if any, otherwise zero.  re_search uses the
-     fastmap, if there is one, to skip over impossible starting points
-     for matches.  */
-  char *__REPB_PREFIX(fastmap);
+    /* Either a translate table to apply to all characters before
+       comparing them, or zero for no translation.  The translation
+       is applied to a pattern when it is compiled and to a string
+       when it is matched.  */
+    RE_TRANSLATE_TYPE translate;
 
-  /* Either a translate table to apply to all characters before
-     comparing them, or zero for no translation.  The translation is
-     applied to a pattern when it is compiled and to a string when it
-     is matched.  */
-  __RE_TRANSLATE_TYPE __REPB_PREFIX(translate);
+    /* Number of subexpressions found by the compiler.  */
+    size_t re_nsub;
 
-  /* Number of subexpressions found by the compiler.  */
-  size_t re_nsub;
+    /* Zero if this pattern cannot match the empty string, one else.
+       Well, in truth it's used only in `re_search_2', to see
+       whether or not we should use the fastmap, so we don't set
+       this absolutely perfectly; see `re_compile_fastmap' (the
+       `duplicate' case).  */
+    unsigned can_be_null:1;
 
-  /* Zero if this pattern cannot match the empty string, one else.
-     Well, in truth it's used only in `re_search_2', to see whether or
-     not we should use the fastmap, so we don't set this absolutely
-     perfectly; see `re_compile_fastmap' (the `duplicate' case).  */
-  unsigned __REPB_PREFIX(can_be_null) : 1;
+    /* If REGS_UNALLOCATED, allocate space in the `regs' structure
+       for `max (RE_NREGS, re_nsub + 1)' groups.
+       If REGS_REALLOCATE, reallocate space if necessary.
+       If REGS_FIXED, use what's there.  */
+#define REGS_UNALLOCATED 0
+#define REGS_REALLOCATE 1
+#define REGS_FIXED 2
+    unsigned regs_allocated:2;
 
-  /* If REGS_UNALLOCATED, allocate space in the `regs' structure
-     for `max (RE_NREGS, re_nsub + 1)' groups.
-     If REGS_REALLOCATE, reallocate space if necessary.
-     If REGS_FIXED, use what's there.  */
-#ifdef __USE_GNU
-# define REGS_UNALLOCATED 0
-# define REGS_REALLOCATE 1
-# define REGS_FIXED 2
-#endif
-  unsigned __REPB_PREFIX(regs_allocated) : 2;
+    /* Set to zero when `regex_compile' compiles a pattern; set to one
+       by `re_compile_fastmap' if it updates the fastmap.  */
+    unsigned fastmap_accurate:1;
 
-  /* Set to zero when `regex_compile' compiles a pattern; set to one
-     by `re_compile_fastmap' if it updates the fastmap.  */
-  unsigned __REPB_PREFIX(fastmap_accurate) : 1;
+    /* If set, `re_match_2' does not return information about
+       subexpressions.  */
+    unsigned no_sub:1;
 
-  /* If set, `re_match_2' does not return information about
-     subexpressions.  */
-  unsigned __REPB_PREFIX(no_sub) : 1;
+    /* If set, a beginning-of-line anchor doesn't match at the
+       beginning of the string.  */
+    unsigned not_bol:1;
 
-  /* If set, a beginning-of-line anchor doesn't match at the beginning
-     of the string.  */
-  unsigned __REPB_PREFIX(not_bol) : 1;
+    /* Similarly for an end-of-line anchor.  */
+    unsigned not_eol:1;
 
-  /* Similarly for an end-of-line anchor.  */
-  unsigned __REPB_PREFIX(not_eol) : 1;
+    /* If true, an anchor at a newline matches.  */
+    unsigned newline_anchor:1;
 
-  /* If true, an anchor at a newline matches.  */
-  unsigned __REPB_PREFIX(newline_anchor) : 1;
-};
+/* [[[end pattern_buffer]]] */
+  };
 
-typedef struct re_pattern_buffer regex_t;
+  typedef struct re_pattern_buffer regex_t;
 
 /* Type for byte offsets within the string.  POSIX mandates this.  */
-typedef int regoff_t;
+  typedef int regoff_t;
 
 
-#ifdef __USE_GNU
 /* This is the structure we store register match data in.  See
    regex.texinfo for a full description of what registers match.  */
-struct re_registers
-{
-  unsigned num_regs;
-  regoff_t *start;
-  regoff_t *end;
-};
+  struct re_registers
+  {
+    unsigned num_regs;
+    regoff_t *start;
+    regoff_t *end;
+  };
 
 
 /* If `regs_allocated' is REGS_UNALLOCATED in the pattern buffer,
    `re_match_2' returns information about at least this many registers
    the first time a `regs' structure is passed.  */
-# ifndef RE_NREGS
-#  define RE_NREGS 30
-# endif
+#ifndef RE_NREGS
+#define RE_NREGS 30
 #endif
 
 
 /* POSIX specification for registers.  Aside from the different names than
    `re_registers', POSIX uses an array of structures, instead of a
    structure of arrays.  */
-typedef struct
-{
-  regoff_t rm_so;  /* Byte offset from string's start to substring's start.  */
-  regoff_t rm_eo;  /* Byte offset from string's start to substring's end.  */
-} regmatch_t;
+  typedef struct
+  {
+    regoff_t rm_so;		/* Byte offset from string's start to substring's start.  */
+    regoff_t rm_eo;		/* Byte offset from string's start to substring's end.  */
+  }
+  regmatch_t;
 
 /* Declarations for routines.  */
 
-#ifdef __USE_GNU
+/* To avoid duplicating every routine declaration -- once with a
+	prototype (if we are ANSI), and once without (if we aren't) -- we
+   use the following macro to declare argument types.  This
+   unfortunately clutters up the declarations a bit, but I think it's
+   worth it.  */
+#ifndef __STDC__
+#define __STDC__ 1
+#endif
+#if __STDC__
+
+#define _RE_ARGS(args) args
+
+#else				/* not __STDC__ */
+
+#define _RE_ARGS(args) ()
+
+#endif				/* not __STDC__ */
+
 /* Sets the current default syntax to SYNTAX, and return the old syntax.
    You can also simply assign to the `re_syntax_options' variable.  */
-extern reg_syntax_t re_set_syntax (reg_syntax_t __syntax);
+  extern reg_syntax_t re_set_syntax _RE_ARGS ((reg_syntax_t syntax));
 
 /* Compile the regular expression PATTERN, with length LENGTH
    and syntax given by the global `re_syntax_options', into the buffer
    BUFFER.  Return NULL if successful, and an error string if not.  */
-extern const char *re_compile_pattern (const char *__pattern, size_t __length,
-				       struct re_pattern_buffer *__buffer);
+  extern const char *re_compile_pattern
+    _RE_ARGS ((const char *pattern, size_t length,
+	       struct re_pattern_buffer * buffer));
 
 
 /* Compile a fastmap for the compiled pattern in BUFFER; used to
    accelerate searches.  Return 0 if successful and -2 if was an
    internal error.  */
-extern int re_compile_fastmap (struct re_pattern_buffer *__buffer);
+  extern int re_compile_fastmap
+    _RE_ARGS ((struct re_pattern_buffer * buffer));
 
 
 /* Search in the string STRING (with length LENGTH) for the pattern
@@ -479,30 +465,31 @@
    characters.  Return the starting position of the match, -1 for no
    match, or -2 for an internal error.  Also return register
    information in REGS (if REGS and BUFFER->no_sub are nonzero).  */
-extern int re_search (struct re_pattern_buffer *__buffer, const char *__string,
-		      int __length, int __start, int __range,
-		      struct re_registers *__regs);
+  extern int re_search
+    _RE_ARGS ((struct re_pattern_buffer * buffer, const char *string,
+	       int length, int start, int range, struct re_registers * regs));
 
 
 /* Like `re_search', but search in the concatenation of STRING1 and
    STRING2.  Also, stop searching at index START + STOP.  */
-extern int re_search_2 (struct re_pattern_buffer *__buffer,
-			const char *__string1, int __length1,
-			const char *__string2, int __length2, int __start,
-			int __range, struct re_registers *__regs, int __stop);
+  extern int re_search_2
+    _RE_ARGS ((struct re_pattern_buffer * buffer, const char *string1,
+	       int length1, const char *string2, int length2,
+	       int start, int range, struct re_registers * regs, int stop));
 
 
 /* Like `re_search', but return how many characters in STRING the regexp
    in BUFFER matched, starting at position START.  */
-extern int re_match (struct re_pattern_buffer *__buffer, const char *__string,
-		     int __length, int __start, struct re_registers *__regs);
+  extern int re_match
+    _RE_ARGS ((struct re_pattern_buffer * buffer, const char *string,
+	       int length, int start, struct re_registers * regs));
 
 
 /* Relates to `re_match' as `re_search_2' relates to `re_search'.  */
-extern int re_match_2 (struct re_pattern_buffer *__buffer,
-		       const char *__string1, int __length1,
-		       const char *__string2, int __length2, int __start,
-		       struct re_registers *__regs, int __stop);
+  extern int re_match_2
+    _RE_ARGS ((struct re_pattern_buffer * buffer, const char *string1,
+	       int length1, const char *string2, int length2,
+	       int start, struct re_registers * regs, int stop));
 
 
 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
@@ -517,59 +504,42 @@
    Unless this function is called, the first search or match using
    PATTERN_BUFFER will allocate its own register data, without
    freeing the old data.  */
-extern void re_set_registers (struct re_pattern_buffer *__buffer,
-			      struct re_registers *__regs,
-			      unsigned int __num_regs,
-			      regoff_t *__starts, regoff_t *__ends);
-#endif	/* Use GNU */
+  extern void re_set_registers
+    _RE_ARGS ((struct re_pattern_buffer * buffer, struct re_registers * regs,
+	       unsigned num_regs, regoff_t * starts, regoff_t * ends));
 
-#if defined _REGEX_RE_COMP || (defined _LIBC && defined __USE_BSD)
-# ifndef _CRAY
+#ifdef _REGEX_RE_COMP
+#ifndef _CRAY
 /* 4.2 bsd compatibility.  */
-extern char *re_comp (const char *);
-extern int re_exec (const char *);
-# endif
+  extern char *re_comp _RE_ARGS ((const char *));
+  extern int re_exec _RE_ARGS ((const char *));
 #endif
-
-/* GCC 2.95 and later have "__restrict"; C99 compilers have
-   "restrict", and "configure" may have defined "restrict".  */
-#ifndef __restrict
-# if ! (2 < __GNUC__ || (2 == __GNUC__ && 95 <= __GNUC_MINOR__))
-#  if defined restrict || 199901L <= __STDC_VERSION__
-#   define __restrict restrict
-#  else
-#   define __restrict
-#  endif
-# endif
 #endif
-/* gcc 3.1 and up support the [restrict] syntax.  */
-#ifndef __restrict_arr
-# if (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) \
-     && !defined __GNUG__
-#  define __restrict_arr __restrict
-# else
-#  define __restrict_arr
-# endif
-#endif
 
 /* POSIX compatibility.  */
-extern int regcomp (regex_t *__restrict __preg,
-		    const char *__restrict __pattern,
-		    int __cflags);
+  extern int regcomp
+    _RE_ARGS ((regex_t * preg, const char *pattern, int cflags));
+  extern int regexec
+    _RE_ARGS (
+	      (const regex_t * preg, const char *string, size_t nmatch,
+	       regmatch_t pmatch[], int eflags));
+  extern size_t regerror
+    _RE_ARGS (
+	      (int errcode, const regex_t * preg, char *errbuf,
+	       size_t errbuf_size));
+  extern void regfree _RE_ARGS ((regex_t * preg));
 
-extern int regexec (const regex_t *__restrict __preg,
-		    const char *__restrict __string, size_t __nmatch,
-		    regmatch_t __pmatch[__restrict_arr],
-		    int __eflags);
 
-extern size_t regerror (int __errcode, const regex_t *__restrict __preg,
-			char *__restrict __errbuf, size_t __errbuf_size);
-
-extern void regfree (regex_t *__preg);
-
-
 #ifdef __cplusplus
 }
-#endif	/* C++ */
+#endif				/* C++ */
 
-#endif /* regex.h */
+#endif				/* regex.h */
+
+/*
+Local variables:
+make-backup-files: t
+version-control: t
+trim-versions-without-asking: nil
+End:
+*/

Deleted: trunk/src/utilfuns/regcomp.c
===================================================================
--- trunk/src/utilfuns/regcomp.c	2009-12-07 04:02:43 UTC (rev 2486)
+++ trunk/src/utilfuns/regcomp.c	2009-12-08 07:18:00 UTC (rev 2487)
@@ -1,3818 +0,0 @@
-/* Extended regular expression matching and search library.
-   Copyright (C) 2002,2003,2004,2005,2006,2007,2009
-   Free Software Foundation, Inc.
-   This file is part of the GNU C Library.
-   Contributed by Isamu Hasegawa <isamu at yamato.ibm.com>.
-
-   The GNU C Library is free software; you can redistribute it and/or
-   modify it under the terms of the GNU Lesser General Public
-   License as published by the Free Software Foundation; either
-   version 2.1 of the License, or (at your option) any later version.
-
-   The GNU C Library is distributed in the hope that it will be useful,
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-   Lesser General Public License for more details.
-
-   You should have received a copy of the GNU Lesser General Public
-   License along with the GNU C Library; if not, write to the Free
-   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
-   02111-1307 USA.  */
-
-static reg_errcode_t re_compile_internal (regex_t *preg, const char * pattern,
-					  size_t length, reg_syntax_t syntax);
-static void re_compile_fastmap_iter (regex_t *bufp,
-				     const re_dfastate_t *init_state,
-				     char *fastmap);
-static reg_errcode_t init_dfa (re_dfa_t *dfa, size_t pat_len);
-#ifdef RE_ENABLE_I18N
-static void free_charset (re_charset_t *cset);
-#endif /* RE_ENABLE_I18N */
-static void free_workarea_compile (regex_t *preg);
-static reg_errcode_t create_initial_state (re_dfa_t *dfa);
-#ifdef RE_ENABLE_I18N
-static void optimize_utf8 (re_dfa_t *dfa);
-#endif
-static reg_errcode_t analyze (regex_t *preg);
-static reg_errcode_t preorder (bin_tree_t *root,
-			       reg_errcode_t (fn (void *, bin_tree_t *)),
-			       void *extra);
-static reg_errcode_t postorder (bin_tree_t *root,
-				reg_errcode_t (fn (void *, bin_tree_t *)),
-				void *extra);
-static reg_errcode_t optimize_subexps (void *extra, bin_tree_t *node);
-static reg_errcode_t lower_subexps (void *extra, bin_tree_t *node);
-static bin_tree_t *lower_subexp (reg_errcode_t *err, regex_t *preg,
-				 bin_tree_t *node);
-static reg_errcode_t calc_first (void *extra, bin_tree_t *node);
-static reg_errcode_t calc_next (void *extra, bin_tree_t *node);
-static reg_errcode_t link_nfa_nodes (void *extra, bin_tree_t *node);
-static int duplicate_node (re_dfa_t *dfa, int org_idx, unsigned int constraint);
-static int search_duplicated_node (const re_dfa_t *dfa, int org_node,
-				   unsigned int constraint);
-static reg_errcode_t calc_eclosure (re_dfa_t *dfa);
-static reg_errcode_t calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa,
-					 int node, int root);
-static reg_errcode_t calc_inveclosure (re_dfa_t *dfa);
-static int fetch_number (re_string_t *input, re_token_t *token,
-			 reg_syntax_t syntax);
-static int peek_token (re_token_t *token, re_string_t *input,
-			reg_syntax_t syntax) internal_function;
-static bin_tree_t *parse (re_string_t *regexp, regex_t *preg,
-			  reg_syntax_t syntax, reg_errcode_t *err);
-static bin_tree_t *parse_reg_exp (re_string_t *regexp, regex_t *preg,
-				  re_token_t *token, reg_syntax_t syntax,
-				  int nest, reg_errcode_t *err);
-static bin_tree_t *parse_branch (re_string_t *regexp, regex_t *preg,
-				 re_token_t *token, reg_syntax_t syntax,
-				 int nest, reg_errcode_t *err);
-static bin_tree_t *parse_expression (re_string_t *regexp, regex_t *preg,
-				     re_token_t *token, reg_syntax_t syntax,
-				     int nest, reg_errcode_t *err);
-static bin_tree_t *parse_sub_exp (re_string_t *regexp, regex_t *preg,
-				  re_token_t *token, reg_syntax_t syntax,
-				  int nest, reg_errcode_t *err);
-static bin_tree_t *parse_dup_op (bin_tree_t *dup_elem, re_string_t *regexp,
-				 re_dfa_t *dfa, re_token_t *token,
-				 reg_syntax_t syntax, reg_errcode_t *err);
-static bin_tree_t *parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa,
-				      re_token_t *token, reg_syntax_t syntax,
-				      reg_errcode_t *err);
-static reg_errcode_t parse_bracket_element (bracket_elem_t *elem,
-					    re_string_t *regexp,
-					    re_token_t *token, int token_len,
-					    re_dfa_t *dfa,
-					    reg_syntax_t syntax,
-					    int accept_hyphen);
-static reg_errcode_t parse_bracket_symbol (bracket_elem_t *elem,
-					  re_string_t *regexp,
-					  re_token_t *token);
-#ifdef RE_ENABLE_I18N
-static reg_errcode_t build_equiv_class (bitset_t sbcset,
-					re_charset_t *mbcset,
-					int *equiv_class_alloc,
-					const unsigned char *name);
-static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans,
-				      bitset_t sbcset,
-				      re_charset_t *mbcset,
-				      int *char_class_alloc,
-				      const unsigned char *class_name,
-				      reg_syntax_t syntax);
-#else  /* not RE_ENABLE_I18N */
-static reg_errcode_t build_equiv_class (bitset_t sbcset,
-					const unsigned char *name);
-static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans,
-				      bitset_t sbcset,
-				      const unsigned char *class_name,
-				      reg_syntax_t syntax);
-#endif /* not RE_ENABLE_I18N */
-static bin_tree_t *build_charclass_op (re_dfa_t *dfa,
-				       RE_TRANSLATE_TYPE trans,
-				       const unsigned char *class_name,
-				       const unsigned char *extra,
-				       int non_match, reg_errcode_t *err);
-static bin_tree_t *create_tree (re_dfa_t *dfa,
-				bin_tree_t *left, bin_tree_t *right,
-				re_token_type_t type);
-static bin_tree_t *create_token_tree (re_dfa_t *dfa,
-				      bin_tree_t *left, bin_tree_t *right,
-				      const re_token_t *token);
-static bin_tree_t *duplicate_tree (const bin_tree_t *src, re_dfa_t *dfa);
-static void free_token (re_token_t *node);
-static reg_errcode_t free_tree (void *extra, bin_tree_t *node);
-static reg_errcode_t mark_opt_subexp (void *extra, bin_tree_t *node);
-
-/* This table gives an error message for each of the error codes listed
-   in regex.h.  Obviously the order here has to be same as there.
-   POSIX doesn't require that we do anything for REG_NOERROR,
-   but why not be nice?  */
-
-const char __re_error_msgid[] attribute_hidden =
-  {
-#define REG_NOERROR_IDX	0
-    gettext_noop ("Success")	/* REG_NOERROR */
-    "\0"
-#define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
-    gettext_noop ("No match")	/* REG_NOMATCH */
-    "\0"
-#define REG_BADPAT_IDX	(REG_NOMATCH_IDX + sizeof "No match")
-    gettext_noop ("Invalid regular expression") /* REG_BADPAT */
-    "\0"
-#define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
-    gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
-    "\0"
-#define REG_ECTYPE_IDX	(REG_ECOLLATE_IDX + sizeof "Invalid collation character")
-    gettext_noop ("Invalid character class name") /* REG_ECTYPE */
-    "\0"
-#define REG_EESCAPE_IDX	(REG_ECTYPE_IDX + sizeof "Invalid character class name")
-    gettext_noop ("Trailing backslash") /* REG_EESCAPE */
-    "\0"
-#define REG_ESUBREG_IDX	(REG_EESCAPE_IDX + sizeof "Trailing backslash")
-    gettext_noop ("Invalid back reference") /* REG_ESUBREG */
-    "\0"
-#define REG_EBRACK_IDX	(REG_ESUBREG_IDX + sizeof "Invalid back reference")
-    gettext_noop ("Unmatched [ or [^")	/* REG_EBRACK */
-    "\0"
-#define REG_EPAREN_IDX	(REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
-    gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
-    "\0"
-#define REG_EBRACE_IDX	(REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
-    gettext_noop ("Unmatched \\{") /* REG_EBRACE */
-    "\0"
-#define REG_BADBR_IDX	(REG_EBRACE_IDX + sizeof "Unmatched \\{")
-    gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
-    "\0"
-#define REG_ERANGE_IDX	(REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
-    gettext_noop ("Invalid range end")	/* REG_ERANGE */
-    "\0"
-#define REG_ESPACE_IDX	(REG_ERANGE_IDX + sizeof "Invalid range end")
-    gettext_noop ("Memory exhausted") /* REG_ESPACE */
-    "\0"
-#define REG_BADRPT_IDX	(REG_ESPACE_IDX + sizeof "Memory exhausted")
-    gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
-    "\0"
-#define REG_EEND_IDX	(REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
-    gettext_noop ("Premature end of regular expression") /* REG_EEND */
-    "\0"
-#define REG_ESIZE_IDX	(REG_EEND_IDX + sizeof "Premature end of regular expression")
-    gettext_noop ("Regular expression too big") /* REG_ESIZE */
-    "\0"
-#define REG_ERPAREN_IDX	(REG_ESIZE_IDX + sizeof "Regular expression too big")
-    gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
-  };
-
-const size_t __re_error_msgid_idx[] attribute_hidden =
-  {
-    REG_NOERROR_IDX,
-    REG_NOMATCH_IDX,
-    REG_BADPAT_IDX,
-    REG_ECOLLATE_IDX,
-    REG_ECTYPE_IDX,
-    REG_EESCAPE_IDX,
-    REG_ESUBREG_IDX,
-    REG_EBRACK_IDX,
-    REG_EPAREN_IDX,
-    REG_EBRACE_IDX,
-    REG_BADBR_IDX,
-    REG_ERANGE_IDX,
-    REG_ESPACE_IDX,
-    REG_BADRPT_IDX,
-    REG_EEND_IDX,
-    REG_ESIZE_IDX,
-    REG_ERPAREN_IDX
-  };
-
-/* Entry points for GNU code.  */
-
-/* re_compile_pattern is the GNU regular expression compiler: it
-   compiles PATTERN (of length LENGTH) and puts the result in BUFP.
-   Returns 0 if the pattern was valid, otherwise an error string.
-
-   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
-   are set in BUFP on entry.  */
-
-const char *
-re_compile_pattern (pattern, length, bufp)
-    const char *pattern;
-    size_t length;
-    struct re_pattern_buffer *bufp;
-{
-  reg_errcode_t ret;
-
-  /* And GNU code determines whether or not to get register information
-     by passing null for the REGS argument to re_match, etc., not by
-     setting no_sub, unless RE_NO_SUB is set.  */
-  bufp->no_sub = !!(re_syntax_options & RE_NO_SUB);
-
-  /* Match anchors at newline.  */
-  bufp->newline_anchor = 1;
-
-  ret = re_compile_internal (bufp, pattern, length, re_syntax_options);
-
-  if (!ret)
-    return NULL;
-  return gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]);
-}
-#ifdef _LIBC
-weak_alias (__re_compile_pattern, re_compile_pattern)
-#endif
-
-/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
-   also be assigned to arbitrarily: each pattern buffer stores its own
-   syntax, so it can be changed between regex compilations.  */
-/* This has no initializer because initialized variables in Emacs
-   become read-only after dumping.  */
-reg_syntax_t re_syntax_options;
-
-
-/* Specify the precise syntax of regexps for compilation.  This provides
-   for compatibility for various utilities which historically have
-   different, incompatible syntaxes.
-
-   The argument SYNTAX is a bit mask comprised of the various bits
-   defined in regex.h.  We return the old syntax.  */
-
-reg_syntax_t
-re_set_syntax (syntax)
-    reg_syntax_t syntax;
-{
-  reg_syntax_t ret = re_syntax_options;
-
-  re_syntax_options = syntax;
-  return ret;
-}
-#ifdef _LIBC
-weak_alias (__re_set_syntax, re_set_syntax)
-#endif
-
-int
-re_compile_fastmap (bufp)
-    struct re_pattern_buffer *bufp;
-{
-  re_dfa_t *dfa = (re_dfa_t *) bufp->buffer;
-  char *fastmap = bufp->fastmap;
-
-  memset (fastmap, '\0', sizeof (char) * SBC_MAX);
-  re_compile_fastmap_iter (bufp, dfa->init_state, fastmap);
-  if (dfa->init_state != dfa->init_state_word)
-    re_compile_fastmap_iter (bufp, dfa->init_state_word, fastmap);
-  if (dfa->init_state != dfa->init_state_nl)
-    re_compile_fastmap_iter (bufp, dfa->init_state_nl, fastmap);
-  if (dfa->init_state != dfa->init_state_begbuf)
-    re_compile_fastmap_iter (bufp, dfa->init_state_begbuf, fastmap);
-  bufp->fastmap_accurate = 1;
-  return 0;
-}
-#ifdef _LIBC
-weak_alias (__re_compile_fastmap, re_compile_fastmap)
-#endif
-
-static inline void
-__attribute ((always_inline))
-re_set_fastmap (char *fastmap, int icase, int ch)
-{
-  fastmap[ch] = 1;
-  if (icase)
-    fastmap[tolower (ch)] = 1;
-}
-
-/* Helper function for re_compile_fastmap.
-   Compile fastmap for the initial_state INIT_STATE.  */
-
-static void
-re_compile_fastmap_iter (regex_t *bufp, const re_dfastate_t *init_state,
-			 char *fastmap)
-{
-  re_dfa_t *dfa = (re_dfa_t *) bufp->buffer;
-  int node_cnt;
-  int icase = (dfa->mb_cur_max == 1 && (bufp->syntax & RE_ICASE));
-  for (node_cnt = 0; node_cnt < init_state->nodes.nelem; ++node_cnt)
-    {
-      int node = init_state->nodes.elems[node_cnt];
-      re_token_type_t type = dfa->nodes[node].type;
-
-      if (type == CHARACTER)
-	{
-	  re_set_fastmap (fastmap, icase, dfa->nodes[node].opr.c);
-#ifdef RE_ENABLE_I18N
-	  if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1)
-	    {
-	      unsigned char *buf = alloca (dfa->mb_cur_max), *p;
-	      wchar_t wc;
-	      mbstate_t state;
-
-	      p = buf;
-	      *p++ = dfa->nodes[node].opr.c;
-	      while (++node < dfa->nodes_len
-		     &&	dfa->nodes[node].type == CHARACTER
-		     && dfa->nodes[node].mb_partial)
-		*p++ = dfa->nodes[node].opr.c;
-	      memset (&state, '\0', sizeof (state));
-	      if (__mbrtowc (&wc, (const char *) buf, p - buf,
-			     &state) == p - buf
-		  && (__wcrtomb ((char *) buf, towlower (wc), &state)
-		      != (size_t) -1))
-		re_set_fastmap (fastmap, 0, buf[0]);
-	    }
-#endif
-	}
-      else if (type == SIMPLE_BRACKET)
-	{
-	  int i, ch;
-	  for (i = 0, ch = 0; i < BITSET_WORDS; ++i)
-	    {
-	      int j;
-	      bitset_word_t w = dfa->nodes[node].opr.sbcset[i];
-	      for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch)
-		if (w & ((bitset_word_t) 1 << j))
-		  re_set_fastmap (fastmap, icase, ch);
-	    }
-	}
-#ifdef RE_ENABLE_I18N
-      else if (type == COMPLEX_BRACKET)
-	{
-	  re_charset_t *cset = dfa->nodes[node].opr.mbcset;
-	  int i;
-
-# ifdef _LIBC
-	  /* See if we have to try all bytes which start multiple collation
-	     elements.
-	     e.g. In da_DK, we want to catch 'a' since "aa" is a valid
-		  collation element, and don't catch 'b' since 'b' is
-		  the only collation element which starts from 'b' (and
-		  it is caught by SIMPLE_BRACKET).  */
-	      if (_NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES) != 0
-		  && (cset->ncoll_syms || cset->nranges))
-		{
-		  const int32_t *table = (const int32_t *)
-		    _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
-		  for (i = 0; i < SBC_MAX; ++i)
-		    if (table[i] < 0)
-		      re_set_fastmap (fastmap, icase, i);
-		}
-# endif /* _LIBC */
-
-	  /* See if we have to start the match at all multibyte characters,
-	     i.e. where we would not find an invalid sequence.  This only
-	     applies to multibyte character sets; for single byte character
-	     sets, the SIMPLE_BRACKET again suffices.  */
-	  if (dfa->mb_cur_max > 1
-	      && (cset->nchar_classes || cset->non_match
-# ifdef _LIBC
-		  || cset->nequiv_classes
-# endif /* _LIBC */
-		 ))
-	    {
-	      unsigned char c = 0;
-	      do
-		{
-		  mbstate_t mbs;
-		  memset (&mbs, 0, sizeof (mbs));
-		  if (__mbrtowc (NULL, (char *) &c, 1, &mbs) == (size_t) -2)
-		    re_set_fastmap (fastmap, false, (int) c);
-		}
-	      while (++c != 0);
-	    }
-
-	  else
-	    {
-	      /* ... Else catch all bytes which can start the mbchars.  */
-	      for (i = 0; i < cset->nmbchars; ++i)
-		{
-		  char buf[256];
-		  mbstate_t state;
-		  memset (&state, '\0', sizeof (state));
-		  if (__wcrtomb (buf, cset->mbchars[i], &state) != (size_t) -1)
-		    re_set_fastmap (fastmap, icase, *(unsigned char *) buf);
-		  if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1)
-		    {
-		      if (__wcrtomb (buf, towlower (cset->mbchars[i]), &state)
-			  != (size_t) -1)
-			re_set_fastmap (fastmap, false, *(unsigned char *) buf);
-		    }
- 		}
- 	    }
-	}
-#endif /* RE_ENABLE_I18N */
-      else if (type == OP_PERIOD
-#ifdef RE_ENABLE_I18N
-	       || type == OP_UTF8_PERIOD
-#endif /* RE_ENABLE_I18N */
-	       || type == END_OF_RE)
-	{
-	  memset (fastmap, '\1', sizeof (char) * SBC_MAX);
-	  if (type == END_OF_RE)
-	    bufp->can_be_null = 1;
-	  return;
-	}
-    }
-}
-
-/* Entry point for POSIX code.  */
-/* regcomp takes a regular expression as a string and compiles it.
-
-   PREG is a regex_t *.  We do not expect any fields to be initialized,
-   since POSIX says we shouldn't.  Thus, we set
-
-     `buffer' to the compiled pattern;
-     `used' to the length of the compiled pattern;
-     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
-       REG_EXTENDED bit in CFLAGS is set; otherwise, to
-       RE_SYNTAX_POSIX_BASIC;
-     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
-     `fastmap' to an allocated space for the fastmap;
-     `fastmap_accurate' to zero;
-     `re_nsub' to the number of subexpressions in PATTERN.
-
-   PATTERN is the address of the pattern string.
-
-   CFLAGS is a series of bits which affect compilation.
-
-     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
-     use POSIX basic syntax.
-
-     If REG_NEWLINE is set, then . and [^...] don't match newline.
-     Also, regexec will try a match beginning after every newline.
-
-     If REG_ICASE is set, then we considers upper- and lowercase
-     versions of letters to be equivalent when matching.
-
-     If REG_NOSUB is set, then when PREG is passed to regexec, that
-     routine will report only success or failure, and nothing about the
-     registers.
-
-   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
-   the return codes and their meanings.)  */
-
-int
-regcomp (preg, pattern, cflags)
-    regex_t *__restrict preg;
-    const char *__restrict pattern;
-    int cflags;
-{
-  reg_errcode_t ret;
-  reg_syntax_t syntax = ((cflags & REG_EXTENDED) ? RE_SYNTAX_POSIX_EXTENDED
-			 : RE_SYNTAX_POSIX_BASIC);
-
-  preg->buffer = NULL;
-  preg->allocated = 0;
-  preg->used = 0;
-
-  /* Try to allocate space for the fastmap.  */
-  preg->fastmap = re_malloc (char, SBC_MAX);
-  if (BE (preg->fastmap == NULL, 0))
-    return REG_ESPACE;
-
-  syntax |= (cflags & REG_ICASE) ? RE_ICASE : 0;
-
-  /* If REG_NEWLINE is set, newlines are treated differently.  */
-  if (cflags & REG_NEWLINE)
-    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
-      syntax &= ~RE_DOT_NEWLINE;
-      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
-      /* It also changes the matching behavior.  */
-      preg->newline_anchor = 1;
-    }
-  else
-    preg->newline_anchor = 0;
-  preg->no_sub = !!(cflags & REG_NOSUB);
-  preg->translate = NULL;
-
-  ret = re_compile_internal (preg, pattern, strlen (pattern), syntax);
-
-  /* POSIX doesn't distinguish between an unmatched open-group and an
-     unmatched close-group: both are REG_EPAREN.  */
-  if (ret == REG_ERPAREN)
-    ret = REG_EPAREN;
-
-  /* We have already checked preg->fastmap != NULL.  */
-  if (BE (ret == REG_NOERROR, 1))
-    /* Compute the fastmap now, since regexec cannot modify the pattern
-       buffer.  This function never fails in this implementation.  */
-    (void) re_compile_fastmap (preg);
-  else
-    {
-      /* Some error occurred while compiling the expression.  */
-      re_free (preg->fastmap);
-      preg->fastmap = NULL;
-    }
-
-  return (int) ret;
-}
-#ifdef _LIBC
-weak_alias (__regcomp, regcomp)
-#endif
-
-/* Returns a message corresponding to an error code, ERRCODE, returned
-   from either regcomp or regexec.   We don't use PREG here.  */
-
-size_t
-regerror (errcode, preg, errbuf, errbuf_size)
-    int errcode;
-    const regex_t *__restrict preg;
-    char *__restrict errbuf;
-    size_t errbuf_size;
-{
-  const char *msg;
-  size_t msg_size;
-
-  if (BE (errcode < 0
-	  || errcode >= (int) (sizeof (__re_error_msgid_idx)
-			       / sizeof (__re_error_msgid_idx[0])), 0))
-    /* Only error codes returned by the rest of the code should be passed
-       to this routine.  If we are given anything else, or if other regex
-       code generates an invalid error code, then the program has a bug.
-       Dump core so we can fix it.  */
-    abort ();
-
-  msg = gettext (__re_error_msgid + __re_error_msgid_idx[errcode]);
-
-  msg_size = strlen (msg) + 1; /* Includes the null.  */
-
-  if (BE (errbuf_size != 0, 1))
-    {
-      if (BE (msg_size > errbuf_size, 0))
-	{
-#if defined HAVE_MEMPCPY || defined _LIBC
-	  *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
-#else
-	  memcpy (errbuf, msg, errbuf_size - 1);
-	  errbuf[errbuf_size - 1] = 0;
-#endif
-	}
-      else
-	memcpy (errbuf, msg, msg_size);
-    }
-
-  return msg_size;
-}
-#ifdef _LIBC
-weak_alias (__regerror, regerror)
-#endif
-
-
-#ifdef RE_ENABLE_I18N
-/* This static array is used for the map to single-byte characters when
-   UTF-8 is used.  Otherwise we would allocate memory just to initialize
-   it the same all the time.  UTF-8 is the preferred encoding so this is
-   a worthwhile optimization.  */
-static const bitset_t utf8_sb_map =
-{
-  /* Set the first 128 bits.  */
-  [0 ... 0x80 / BITSET_WORD_BITS - 1] = BITSET_WORD_MAX
-};
-#endif
-
-
-static void
-free_dfa_content (re_dfa_t *dfa)
-{
-  int i, j;
-
-  if (dfa->nodes)
-    for (i = 0; i < dfa->nodes_len; ++i)
-      free_token (dfa->nodes + i);
-  re_free (dfa->nexts);
-  for (i = 0; i < dfa->nodes_len; ++i)
-    {
-      if (dfa->eclosures != NULL)
-	re_node_set_free (dfa->eclosures + i);
-      if (dfa->inveclosures != NULL)
-	re_node_set_free (dfa->inveclosures + i);
-      if (dfa->edests != NULL)
-	re_node_set_free (dfa->edests + i);
-    }
-  re_free (dfa->edests);
-  re_free (dfa->eclosures);
-  re_free (dfa->inveclosures);
-  re_free (dfa->nodes);
-
-  if (dfa->state_table)
-    for (i = 0; i <= dfa->state_hash_mask; ++i)
-      {
-	struct re_state_table_entry *entry = dfa->state_table + i;
-	for (j = 0; j < entry->num; ++j)
-	  {
-	    re_dfastate_t *state = entry->array[j];
-	    free_state (state);
-	  }
-        re_free (entry->array);
-      }
-  re_free (dfa->state_table);
-#ifdef RE_ENABLE_I18N
-  if (dfa->sb_char != utf8_sb_map)
-    re_free (dfa->sb_char);
-#endif
-  re_free (dfa->subexp_map);
-#ifdef DEBUG
-  re_free (dfa->re_str);
-#endif
-
-  re_free (dfa);
-}
-
-
-/* Free dynamically allocated space used by PREG.  */
-
-void
-regfree (preg)
-    regex_t *preg;
-{
-  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
-  if (BE (dfa != NULL, 1))
-    free_dfa_content (dfa);
-  preg->buffer = NULL;
-  preg->allocated = 0;
-
-  re_free (preg->fastmap);
-  preg->fastmap = NULL;
-
-  re_free (preg->translate);
-  preg->translate = NULL;
-}
-#ifdef _LIBC
-weak_alias (__regfree, regfree)
-#endif
-
-/* Entry points compatible with 4.2 BSD regex library.  We don't define
-   them unless specifically requested.  */
-
-#if defined _REGEX_RE_COMP || defined _LIBC
-
-/* BSD has one and only one pattern buffer.  */
-static struct re_pattern_buffer re_comp_buf;
-
-char *
-# ifdef _LIBC
-/* Make these definitions weak in libc, so POSIX programs can redefine
-   these names if they don't use our functions, and still use
-   regcomp/regexec above without link errors.  */
-weak_function
-# endif
-re_comp (s)
-     const char *s;
-{
-  reg_errcode_t ret;
-  char *fastmap;
-
-  if (!s)
-    {
-      if (!re_comp_buf.buffer)
-	return gettext ("No previous regular expression");
-      return 0;
-    }
-
-  if (re_comp_buf.buffer)
-    {
-      fastmap = re_comp_buf.fastmap;
-      re_comp_buf.fastmap = NULL;
-      __regfree (&re_comp_buf);
-      memset (&re_comp_buf, '\0', sizeof (re_comp_buf));
-      re_comp_buf.fastmap = fastmap;
-    }
-
-  if (re_comp_buf.fastmap == NULL)
-    {
-      re_comp_buf.fastmap = (char *) malloc (SBC_MAX);
-      if (re_comp_buf.fastmap == NULL)
-	return (char *) gettext (__re_error_msgid
-				 + __re_error_msgid_idx[(int) REG_ESPACE]);
-    }
-
-  /* Since `re_exec' always passes NULL for the `regs' argument, we
-     don't need to initialize the pattern buffer fields which affect it.  */
-
-  /* Match anchors at newlines.  */
-  re_comp_buf.newline_anchor = 1;
-
-  ret = re_compile_internal (&re_comp_buf, s, strlen (s), re_syntax_options);
-
-  if (!ret)
-    return NULL;
-
-  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
-  return (char *) gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]);
-}
-
-#ifdef _LIBC
-libc_freeres_fn (free_mem)
-{
-  __regfree (&re_comp_buf);
-}
-#endif
-
-#endif /* _REGEX_RE_COMP */
-
-/* Internal entry point.
-   Compile the regular expression PATTERN, whose length is LENGTH.
-   SYNTAX indicate regular expression's syntax.  */
-
-static reg_errcode_t
-re_compile_internal (regex_t *preg, const char * pattern, size_t length,
-		     reg_syntax_t syntax)
-{
-  reg_errcode_t err = REG_NOERROR;
-  re_dfa_t *dfa;
-  re_string_t regexp;
-
-  /* Initialize the pattern buffer.  */
-  preg->fastmap_accurate = 0;
-  preg->syntax = syntax;
-  preg->not_bol = preg->not_eol = 0;
-  preg->used = 0;
-  preg->re_nsub = 0;
-  preg->can_be_null = 0;
-  preg->regs_allocated = REGS_UNALLOCATED;
-
-  /* Initialize the dfa.  */
-  dfa = (re_dfa_t *) preg->buffer;
-  if (BE (preg->allocated < sizeof (re_dfa_t), 0))
-    {
-      /* If zero allocated, but buffer is non-null, try to realloc
-	 enough space.  This loses if buffer's address is bogus, but
-	 that is the user's responsibility.  If ->buffer is NULL this
-	 is a simple allocation.  */
-      dfa = re_realloc (preg->buffer, re_dfa_t, 1);
-      if (dfa == NULL)
-	return REG_ESPACE;
-      preg->allocated = sizeof (re_dfa_t);
-      preg->buffer = (unsigned char *) dfa;
-    }
-  preg->used = sizeof (re_dfa_t);
-
-  err = init_dfa (dfa, length);
-  if (BE (err != REG_NOERROR, 0))
-    {
-      free_dfa_content (dfa);
-      preg->buffer = NULL;
-      preg->allocated = 0;
-      return err;
-    }
-#ifdef DEBUG
-  /* Note: length+1 will not overflow since it is checked in init_dfa.  */
-  dfa->re_str = re_malloc (char, length + 1);
-  strncpy (dfa->re_str, pattern, length + 1);
-#endif
-
-  __libc_lock_init (dfa->lock);
-
-  err = re_string_construct (&regexp, pattern, length, preg->translate,
-			     syntax & RE_ICASE, dfa);
-  if (BE (err != REG_NOERROR, 0))
-    {
-    re_compile_internal_free_return:
-      free_workarea_compile (preg);
-      re_string_destruct (&regexp);
-      free_dfa_content (dfa);
-      preg->buffer = NULL;
-      preg->allocated = 0;
-      return err;
-    }
-
-  /* Parse the regular expression, and build a structure tree.  */
-  preg->re_nsub = 0;
-  dfa->str_tree = parse (&regexp, preg, syntax, &err);
-  if (BE (dfa->str_tree == NULL, 0))
-    goto re_compile_internal_free_return;
-
-  /* Analyze the tree and create the nfa.  */
-  err = analyze (preg);
-  if (BE (err != REG_NOERROR, 0))
-    goto re_compile_internal_free_return;
-
-#ifdef RE_ENABLE_I18N
-  /* If possible, do searching in single byte encoding to speed things up.  */
-  if (dfa->is_utf8 && !(syntax & RE_ICASE) && preg->translate == NULL)
-    optimize_utf8 (dfa);
-#endif
-
-  /* Then create the initial state of the dfa.  */
-  err = create_initial_state (dfa);
-
-  /* Release work areas.  */
-  free_workarea_compile (preg);
-  re_string_destruct (&regexp);
-
-  if (BE (err != REG_NOERROR, 0))
-    {
-      free_dfa_content (dfa);
-      preg->buffer = NULL;
-      preg->allocated = 0;
-    }
-
-  return err;
-}
-
-/* Initialize DFA.  We use the length of the regular expression PAT_LEN
-   as the initial length of some arrays.  */
-
-static reg_errcode_t
-init_dfa (re_dfa_t *dfa, size_t pat_len)
-{
-  unsigned int table_size;
-#ifndef _LIBC
-  char *codeset_name;
-#endif
-
-  memset (dfa, '\0', sizeof (re_dfa_t));
-
-  /* Force allocation of str_tree_storage the first time.  */
-  dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE;
-
-  /* Avoid overflows.  */
-  if (pat_len == SIZE_MAX)
-    return REG_ESPACE;
-
-  dfa->nodes_alloc = pat_len + 1;
-  dfa->nodes = re_malloc (re_token_t, dfa->nodes_alloc);
-
-  /*  table_size = 2 ^ ceil(log pat_len) */
-  for (table_size = 1; ; table_size <<= 1)
-    if (table_size > pat_len)
-      break;
-
-  dfa->state_table = calloc (sizeof (struct re_state_table_entry), table_size);
-  dfa->state_hash_mask = table_size - 1;
-
-  dfa->mb_cur_max = MB_CUR_MAX;
-#ifdef _LIBC
-  if (dfa->mb_cur_max == 6
-      && strcmp (_NL_CURRENT (LC_CTYPE, _NL_CTYPE_CODESET_NAME), "UTF-8") == 0)
-    dfa->is_utf8 = 1;
-  dfa->map_notascii = (_NL_CURRENT_WORD (LC_CTYPE, _NL_CTYPE_MAP_TO_NONASCII)
-		       != 0);
-#else
-# ifdef HAVE_LANGINFO_CODESET
-  codeset_name = nl_langinfo (CODESET);
-# else
-  codeset_name = getenv ("LC_ALL");
-  if (codeset_name == NULL || codeset_name[0] == '\0')
-    codeset_name = getenv ("LC_CTYPE");
-  if (codeset_name == NULL || codeset_name[0] == '\0')
-    codeset_name = getenv ("LANG");
-  if (codeset_name == NULL)
-    codeset_name = "";
-  else if (strchr (codeset_name, '.') !=  NULL)
-    codeset_name = strchr (codeset_name, '.') + 1;
-# endif
-
-  if (strcasecmp (codeset_name, "UTF-8") == 0
-      || strcasecmp (codeset_name, "UTF8") == 0)
-    dfa->is_utf8 = 1;
-
-  /* We check exhaustively in the loop below if this charset is a
-     superset of ASCII.  */
-  dfa->map_notascii = 0;
-#endif
-
-#ifdef RE_ENABLE_I18N
-  if (dfa->mb_cur_max > 1)
-    {
-      if (dfa->is_utf8)
-	dfa->sb_char = (re_bitset_ptr_t) utf8_sb_map;
-      else
-	{
-	  int i, j, ch;
-
-	  dfa->sb_char = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1);
-	  if (BE (dfa->sb_char == NULL, 0))
-	    return REG_ESPACE;
-
-	  /* Set the bits corresponding to single byte chars.  */
-	  for (i = 0, ch = 0; i < BITSET_WORDS; ++i)
-	    for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch)
-	      {
-		wint_t wch = __btowc (ch);
-		if (wch != WEOF)
-		  dfa->sb_char[i] |= (bitset_word_t) 1 << j;
-# ifndef _LIBC
-		if (isascii (ch) && wch != ch)
-		  dfa->map_notascii = 1;
-# endif
-	      }
-	}
-    }
-#endif
-
-  if (BE (dfa->nodes == NULL || dfa->state_table == NULL, 0))
-    return REG_ESPACE;
-  return REG_NOERROR;
-}
-
-/* Initialize WORD_CHAR table, which indicate which character is
-   "word".  In this case "word" means that it is the word construction
-   character used by some operators like "\<", "\>", etc.  */
-
-static void
-internal_function
-init_word_char (re_dfa_t *dfa)
-{
-  int i, j, ch;
-  dfa->word_ops_used = 1;
-  for (i = 0, ch = 0; i < BITSET_WORDS; ++i)
-    for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch)
-      if (isalnum (ch) || ch == '_')
-	dfa->word_char[i] |= (bitset_word_t) 1 << j;
-}
-
-/* Free the work area which are only used while compiling.  */
-
-static void
-free_workarea_compile (regex_t *preg)
-{
-  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
-  bin_tree_storage_t *storage, *next;
-  for (storage = dfa->str_tree_storage; storage; storage = next)
-    {
-      next = storage->next;
-      re_free (storage);
-    }
-  dfa->str_tree_storage = NULL;
-  dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE;
-  dfa->str_tree = NULL;
-  re_free (dfa->org_indices);
-  dfa->org_indices = NULL;
-}
-
-/* Create initial states for all contexts.  */
-
-static reg_errcode_t
-create_initial_state (re_dfa_t *dfa)
-{
-  int first, i;
-  reg_errcode_t err;
-  re_node_set init_nodes;
-
-  /* Initial states have the epsilon closure of the node which is
-     the first node of the regular expression.  */
-  first = dfa->str_tree->first->node_idx;
-  dfa->init_node = first;
-  err = re_node_set_init_copy (&init_nodes, dfa->eclosures + first);
-  if (BE (err != REG_NOERROR, 0))
-    return err;
-
-  /* The back-references which are in initial states can epsilon transit,
-     since in this case all of the subexpressions can be null.
-     Then we add epsilon closures of the nodes which are the next nodes of
-     the back-references.  */
-  if (dfa->nbackref > 0)
-    for (i = 0; i < init_nodes.nelem; ++i)
-      {
-	int node_idx = init_nodes.elems[i];
-	re_token_type_t type = dfa->nodes[node_idx].type;
-
-	int clexp_idx;
-	if (type != OP_BACK_REF)
-	  continue;
-	for (clexp_idx = 0; clexp_idx < init_nodes.nelem; ++clexp_idx)
-	  {
-	    re_token_t *clexp_node;
-	    clexp_node = dfa->nodes + init_nodes.elems[clexp_idx];
-	    if (clexp_node->type == OP_CLOSE_SUBEXP
-		&& clexp_node->opr.idx == dfa->nodes[node_idx].opr.idx)
-	      break;
-	  }
-	if (clexp_idx == init_nodes.nelem)
-	  continue;
-
-	if (type == OP_BACK_REF)
-	  {
-	    int dest_idx = dfa->edests[node_idx].elems[0];
-	    if (!re_node_set_contains (&init_nodes, dest_idx))
-	      {
-		re_node_set_merge (&init_nodes, dfa->eclosures + dest_idx);
-		i = 0;
-	      }
-	  }
-      }
-
-  /* It must be the first time to invoke acquire_state.  */
-  dfa->init_state = re_acquire_state_context (&err, dfa, &init_nodes, 0);
-  /* We don't check ERR here, since the initial state must not be NULL.  */
-  if (BE (dfa->init_state == NULL, 0))
-    return err;
-  if (dfa->init_state->has_constraint)
-    {
-      dfa->init_state_word = re_acquire_state_context (&err, dfa, &init_nodes,
-						       CONTEXT_WORD);
-      dfa->init_state_nl = re_acquire_state_context (&err, dfa, &init_nodes,
-						     CONTEXT_NEWLINE);
-      dfa->init_state_begbuf = re_acquire_state_context (&err, dfa,
-							 &init_nodes,
-							 CONTEXT_NEWLINE
-							 | CONTEXT_BEGBUF);
-      if (BE (dfa->init_state_word == NULL || dfa->init_state_nl == NULL
-	      || dfa->init_state_begbuf == NULL, 0))
-	return err;
-    }
-  else
-    dfa->init_state_word = dfa->init_state_nl
-      = dfa->init_state_begbuf = dfa->init_state;
-
-  re_node_set_free (&init_nodes);
-  return REG_NOERROR;
-}
-
-#ifdef RE_ENABLE_I18N
-/* If it is possible to do searching in single byte encoding instead of UTF-8
-   to speed things up, set dfa->mb_cur_max to 1, clear is_utf8 and change
-   DFA nodes where needed.  */
-
-static void
-optimize_utf8 (re_dfa_t *dfa)
-{
-  int node, i, mb_chars = 0, has_period = 0;
-
-  for (node = 0; node < dfa->nodes_len; ++node)
-    switch (dfa->nodes[node].type)
-      {
-      case CHARACTER:
-	if (dfa->nodes[node].opr.c >= 0x80)
-	  mb_chars = 1;
-	break;
-      case ANCHOR:
-	switch (dfa->nodes[node].opr.ctx_type)
-	  {
-	  case LINE_FIRST:
-	  case LINE_LAST:
-	  case BUF_FIRST:
-	  case BUF_LAST:
-	    break;
-	  default:
-	    /* Word anchors etc. cannot be handled.  It's okay to test
-	       opr.ctx_type since constraints (for all DFA nodes) are
-	       created by ORing one or more opr.ctx_type values.  */
-	    return;
-	  }
-	break;
-      case OP_PERIOD:
-        has_period = 1;
-        break;
-      case OP_BACK_REF:
-      case OP_ALT:
-      case END_OF_RE:
-      case OP_DUP_ASTERISK:
-      case OP_OPEN_SUBEXP:
-      case OP_CLOSE_SUBEXP:
-	break;
-      case COMPLEX_BRACKET:
-	return;
-      case SIMPLE_BRACKET:
-	/* Just double check.  The non-ASCII range starts at 0x80.  */
-	assert (0x80 % BITSET_WORD_BITS == 0);
-        for (i = 0x80 / BITSET_WORD_BITS; i < BITSET_WORDS; ++i)
-	  if (dfa->nodes[node].opr.sbcset[i])
-	    return;
-	break;
-      default:
-	abort ();
-      }
-
-  if (mb_chars || has_period)
-    for (node = 0; node < dfa->nodes_len; ++node)
-      {
-	if (dfa->nodes[node].type == CHARACTER
-	    && dfa->nodes[node].opr.c >= 0x80)
-	  dfa->nodes[node].mb_partial = 0;
-	else if (dfa->nodes[node].type == OP_PERIOD)
-	  dfa->nodes[node].type = OP_UTF8_PERIOD;
-      }
-
-  /* The search can be in single byte locale.  */
-  dfa->mb_cur_max = 1;
-  dfa->is_utf8 = 0;
-  dfa->has_mb_node = dfa->nbackref > 0 || has_period;
-}
-#endif
-
-/* Analyze the structure tree, and calculate "first", "next", "edest",
-   "eclosure", and "inveclosure".  */
-
-static reg_errcode_t
-analyze (regex_t *preg)
-{
-  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
-  reg_errcode_t ret;
-
-  /* Allocate arrays.  */
-  dfa->nexts = re_malloc (int, dfa->nodes_alloc);
-  dfa->org_indices = re_malloc (int, dfa->nodes_alloc);
-  dfa->edests = re_malloc (re_node_set, dfa->nodes_alloc);
-  dfa->eclosures = re_malloc (re_node_set, dfa->nodes_alloc);
-  if (BE (dfa->nexts == NULL || dfa->org_indices == NULL || dfa->edests == NULL
-	  || dfa->eclosures == NULL, 0))
-    return REG_ESPACE;
-
-  dfa->subexp_map = re_malloc (int, preg->re_nsub);
-  if (dfa->subexp_map != NULL)
-    {
-      int i;
-      for (i = 0; i < preg->re_nsub; i++)
-	dfa->subexp_map[i] = i;
-      preorder (dfa->str_tree, optimize_subexps, dfa);
-      for (i = 0; i < preg->re_nsub; i++)
-	if (dfa->subexp_map[i] != i)
-	  break;
-      if (i == preg->re_nsub)
-	{
-	  free (dfa->subexp_map);
-	  dfa->subexp_map = NULL;
-	}
-    }
-
-  ret = postorder (dfa->str_tree, lower_subexps, preg);
-  if (BE (ret != REG_NOERROR, 0))
-    return ret;
-  ret = postorder (dfa->str_tree, calc_first, dfa);
-  if (BE (ret != REG_NOERROR, 0))
-    return ret;
-  preorder (dfa->str_tree, calc_next, dfa);
-  ret = preorder (dfa->str_tree, link_nfa_nodes, dfa);
-  if (BE (ret != REG_NOERROR, 0))
-    return ret;
-  ret = calc_eclosure (dfa);
-  if (BE (ret != REG_NOERROR, 0))
-    return ret;
-
-  /* We only need this during the prune_impossible_nodes pass in regexec.c;
-     skip it if p_i_n will not run, as calc_inveclosure can be quadratic.  */
-  if ((!preg->no_sub && preg->re_nsub > 0 && dfa->has_plural_match)
-      || dfa->nbackref)
-    {
-      dfa->inveclosures = re_malloc (re_node_set, dfa->nodes_len);
-      if (BE (dfa->inveclosures == NULL, 0))
-        return REG_ESPACE;
-      ret = calc_inveclosure (dfa);
-    }
-
-  return ret;
-}
-
-/* Our parse trees are very unbalanced, so we cannot use a stack to
-   implement parse tree visits.  Instead, we use parent pointers and
-   some hairy code in these two functions.  */
-static reg_errcode_t
-postorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)),
-	   void *extra)
-{
-  bin_tree_t *node, *prev;
-
-  for (node = root; ; )
-    {
-      /* Descend down the tree, preferably to the left (or to the right
-	 if that's the only child).  */
-      while (node->left || node->right)
-	if (node->left)
-          node = node->left;
-        else
-          node = node->right;
-
-      do
-	{
-	  reg_errcode_t err = fn (extra, node);
-	  if (BE (err != REG_NOERROR, 0))
-	    return err;
-          if (node->parent == NULL)
-	    return REG_NOERROR;
-	  prev = node;
-	  node = node->parent;
-	}
-      /* Go up while we have a node that is reached from the right.  */
-      while (node->right == prev || node->right == NULL);
-      node = node->right;
-    }
-}
-
-static reg_errcode_t
-preorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)),
-	  void *extra)
-{
-  bin_tree_t *node;
-
-  for (node = root; ; )
-    {
-      reg_errcode_t err = fn (extra, node);
-      if (BE (err != REG_NOERROR, 0))
-	return err;
-
-      /* Go to the left node, or up and to the right.  */
-      if (node->left)
-	node = node->left;
-      else
-	{
-	  bin_tree_t *prev = NULL;
-	  while (node->right == prev || node->right == NULL)
-	    {
-	      prev = node;
-	      node = node->parent;
-	      if (!node)
-	        return REG_NOERROR;
-	    }
-	  node = node->right;
-	}
-    }
-}
-
-/* Optimization pass: if a SUBEXP is entirely contained, strip it and tell
-   re_search_internal to map the inner one's opr.idx to this one's.  Adjust
-   backreferences as well.  Requires a preorder visit.  */
-static reg_errcode_t
-optimize_subexps (void *extra, bin_tree_t *node)
-{
-  re_dfa_t *dfa = (re_dfa_t *) extra;
-
-  if (node->token.type == OP_BACK_REF && dfa->subexp_map)
-    {
-      int idx = node->token.opr.idx;
-      node->token.opr.idx = dfa->subexp_map[idx];
-      dfa->used_bkref_map |= 1 << node->token.opr.idx;
-    }
-
-  else if (node->token.type == SUBEXP
-           && node->left && node->left->token.type == SUBEXP)
-    {
-      int other_idx = node->left->token.opr.idx;
-
-      node->left = node->left->left;
-      if (node->left)
-        node->left->parent = node;
-
-      dfa->subexp_map[other_idx] = dfa->subexp_map[node->token.opr.idx];
-      if (other_idx < BITSET_WORD_BITS)
-	  dfa->used_bkref_map &= ~((bitset_word_t) 1 << other_idx);
-    }
-
-  return REG_NOERROR;
-}
-
-/* Lowering pass: Turn each SUBEXP node into the appropriate concatenation
-   of OP_OPEN_SUBEXP, the body of the SUBEXP (if any) and OP_CLOSE_SUBEXP.  */
-static reg_errcode_t
-lower_subexps (void *extra, bin_tree_t *node)
-{
-  regex_t *preg = (regex_t *) extra;
-  reg_errcode_t err = REG_NOERROR;
-
-  if (node->left && node->left->token.type == SUBEXP)
-    {
-      node->left = lower_subexp (&err, preg, node->left);
-      if (node->left)
-	node->left->parent = node;
-    }
-  if (node->right && node->right->token.type == SUBEXP)
-    {
-      node->right = lower_subexp (&err, preg, node->right);
-      if (node->right)
-	node->right->parent = node;
-    }
-
-  return err;
-}
-
-static bin_tree_t *
-lower_subexp (reg_errcode_t *err, regex_t *preg, bin_tree_t *node)
-{
-  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
-  bin_tree_t *body = node->left;
-  bin_tree_t *op, *cls, *tree1, *tree;
-
-  if (preg->no_sub
-      /* We do not optimize empty subexpressions, because otherwise we may
-	 have bad CONCAT nodes with NULL children.  This is obviously not
-	 very common, so we do not lose much.  An example that triggers
-	 this case is the sed "script" /\(\)/x.  */
-      && node->left != NULL
-      && (node->token.opr.idx >= BITSET_WORD_BITS
-	  || !(dfa->used_bkref_map
-	       & ((bitset_word_t) 1 << node->token.opr.idx))))
-    return node->left;
-
-  /* Convert the SUBEXP node to the concatenation of an
-     OP_OPEN_SUBEXP, the contents, and an OP_CLOSE_SUBEXP.  */
-  op = create_tree (dfa, NULL, NULL, OP_OPEN_SUBEXP);
-  cls = create_tree (dfa, NULL, NULL, OP_CLOSE_SUBEXP);
-  tree1 = body ? create_tree (dfa, body, cls, CONCAT) : cls;
-  tree = create_tree (dfa, op, tree1, CONCAT);
-  if (BE (tree == NULL || tree1 == NULL || op == NULL || cls == NULL, 0))
-    {
-      *err = REG_ESPACE;
-      return NULL;
-    }
-
-  op->token.opr.idx = cls->token.opr.idx = node->token.opr.idx;
-  op->token.opt_subexp = cls->token.opt_subexp = node->token.opt_subexp;
-  return tree;
-}
-
-/* Pass 1 in building the NFA: compute FIRST and create unlinked automaton
-   nodes.  Requires a postorder visit.  */
-static reg_errcode_t
-calc_first (void *extra, bin_tree_t *node)
-{
-  re_dfa_t *dfa = (re_dfa_t *) extra;
-  if (node->token.type == CONCAT)
-    {
-      node->first = node->left->first;
-      node->node_idx = node->left->node_idx;
-    }
-  else
-    {
-      node->first = node;
-      node->node_idx = re_dfa_add_node (dfa, node->token);
-      if (BE (node->node_idx == -1, 0))
-        return REG_ESPACE;
-      if (node->token.type == ANCHOR)
-        dfa->nodes[node->node_idx].constraint = node->token.opr.ctx_type;
-    }
-  return REG_NOERROR;
-}
-
-/* Pass 2: compute NEXT on the tree.  Preorder visit.  */
-static reg_errcode_t
-calc_next (void *extra, bin_tree_t *node)
-{
-  switch (node->token.type)
-    {
-    case OP_DUP_ASTERISK:
-      node->left->next = node;
-      break;
-    case CONCAT:
-      node->left->next = node->right->first;
-      node->right->next = node->next;
-      break;
-    default:
-      if (node->left)
-	node->left->next = node->next;
-      if (node->right)
-        node->right->next = node->next;
-      break;
-    }
-  return REG_NOERROR;
-}
-
-/* Pass 3: link all DFA nodes to their NEXT node (any order will do).  */
-static reg_errcode_t
-link_nfa_nodes (void *extra, bin_tree_t *node)
-{
-  re_dfa_t *dfa = (re_dfa_t *) extra;
-  int idx = node->node_idx;
-  reg_errcode_t err = REG_NOERROR;
-
-  switch (node->token.type)
-    {
-    case CONCAT:
-      break;
-
-    case END_OF_RE:
-      assert (node->next == NULL);
-      break;
-
-    case OP_DUP_ASTERISK:
-    case OP_ALT:
-      {
-	int left, right;
-	dfa->has_plural_match = 1;
-	if (node->left != NULL)
-	  left = node->left->first->node_idx;
-	else
-	  left = node->next->node_idx;
-	if (node->right != NULL)
-	  right = node->right->first->node_idx;
-	else
-	  right = node->next->node_idx;
-	assert (left > -1);
-	assert (right > -1);
-	err = re_node_set_init_2 (dfa->edests + idx, left, right);
-      }
-      break;
-
-    case ANCHOR:
-    case OP_OPEN_SUBEXP:
-    case OP_CLOSE_SUBEXP:
-      err = re_node_set_init_1 (dfa->edests + idx, node->next->node_idx);
-      break;
-
-    case OP_BACK_REF:
-      dfa->nexts[idx] = node->next->node_idx;
-      if (node->token.type == OP_BACK_REF)
-	re_node_set_init_1 (dfa->edests + idx, dfa->nexts[idx]);
-      break;
-
-    default:
-      assert (!IS_EPSILON_NODE (node->token.type));
-      dfa->nexts[idx] = node->next->node_idx;
-      break;
-    }
-
-  return err;
-}
-
-/* Duplicate the epsilon closure of the node ROOT_NODE.
-   Note that duplicated nodes have constraint INIT_CONSTRAINT in addition
-   to their own constraint.  */
-
-static reg_errcode_t
-internal_function
-duplicate_node_closure (re_dfa_t *dfa, int top_org_node, int top_clone_node,
-			int root_node, unsigned int init_constraint)
-{
-  int org_node, clone_node, ret;
-  unsigned int constraint = init_constraint;
-  for (org_node = top_org_node, clone_node = top_clone_node;;)
-    {
-      int org_dest, clone_dest;
-      if (dfa->nodes[org_node].type == OP_BACK_REF)
-	{
-	  /* If the back reference epsilon-transit, its destination must
-	     also have the constraint.  Then duplicate the epsilon closure
-	     of the destination of the back reference, and store it in
-	     edests of the back reference.  */
-	  org_dest = dfa->nexts[org_node];
-	  re_node_set_empty (dfa->edests + clone_node);
-	  clone_dest = duplicate_node (dfa, org_dest, constraint);
-	  if (BE (clone_dest == -1, 0))
-	    return REG_ESPACE;
-	  dfa->nexts[clone_node] = dfa->nexts[org_node];
-	  ret = re_node_set_insert (dfa->edests + clone_node, clone_dest);
-	  if (BE (ret < 0, 0))
-	    return REG_ESPACE;
-	}
-      else if (dfa->edests[org_node].nelem == 0)
-	{
-	  /* In case of the node can't epsilon-transit, don't duplicate the
-	     destination and store the original destination as the
-	     destination of the node.  */
-	  dfa->nexts[clone_node] = dfa->nexts[org_node];
-	  break;
-	}
-      else if (dfa->edests[org_node].nelem == 1)
-	{
-	  /* In case of the node can epsilon-transit, and it has only one
-	     destination.  */
-	  org_dest = dfa->edests[org_node].elems[0];
-	  re_node_set_empty (dfa->edests + clone_node);
-	  /* If the node is root_node itself, it means the epsilon clsoure
-	     has a loop.   Then tie it to the destination of the root_node.  */
-	  if (org_node == root_node && clone_node != org_node)
-	    {
-	      ret = re_node_set_insert (dfa->edests + clone_node, org_dest);
-	      if (BE (ret < 0, 0))
-		return REG_ESPACE;
-	      break;
-	    }
-	  /* In case of the node has another constraint, add it.  */
-	  constraint |= dfa->nodes[org_node].constraint;
-	  clone_dest = duplicate_node (dfa, org_dest, constraint);
-	  if (BE (clone_dest == -1, 0))
-	    return REG_ESPACE;
-	  ret = re_node_set_insert (dfa->edests + clone_node, clone_dest);
-	  if (BE (ret < 0, 0))
-	    return REG_ESPACE;
-	}
-      else /* dfa->edests[org_node].nelem == 2 */
-	{
-	  /* In case of the node can epsilon-transit, and it has two
-	     destinations. In the bin_tree_t and DFA, that's '|' and '*'.   */
-	  org_dest = dfa->edests[org_node].elems[0];
-	  re_node_set_empty (dfa->edests + clone_node);
-	  /* Search for a duplicated node which satisfies the constraint.  */
-	  clone_dest = search_duplicated_node (dfa, org_dest, constraint);
-	  if (clone_dest == -1)
-	    {
-	      /* There is no such duplicated node, create a new one.  */
-	      reg_errcode_t err;
-	      clone_dest = duplicate_node (dfa, org_dest, constraint);
-	      if (BE (clone_dest == -1, 0))
-		return REG_ESPACE;
-	      ret = re_node_set_insert (dfa->edests + clone_node, clone_dest);
-	      if (BE (ret < 0, 0))
-		return REG_ESPACE;
-	      err = duplicate_node_closure (dfa, org_dest, clone_dest,
-					    root_node, constraint);
-	      if (BE (err != REG_NOERROR, 0))
-		return err;
-	    }
-	  else
-	    {
-	      /* There is a duplicated node which satisfies the constraint,
-		 use it to avoid infinite loop.  */
-	      ret = re_node_set_insert (dfa->edests + clone_node, clone_dest);
-	      if (BE (ret < 0, 0))
-		return REG_ESPACE;
-	    }
-
-	  org_dest = dfa->edests[org_node].elems[1];
-	  clone_dest = duplicate_node (dfa, org_dest, constraint);
-	  if (BE (clone_dest == -1, 0))
-	    return REG_ESPACE;
-	  ret = re_node_set_insert (dfa->edests + clone_node, clone_dest);
-	  if (BE (ret < 0, 0))
-	    return REG_ESPACE;
-	}
-      org_node = org_dest;
-      clone_node = clone_dest;
-    }
-  return REG_NOERROR;
-}
-
-/* Search for a node which is duplicated from the node ORG_NODE, and
-   satisfies the constraint CONSTRAINT.  */
-
-static int
-search_duplicated_node (const re_dfa_t *dfa, int org_node,
-			unsigned int constraint)
-{
-  int idx;
-  for (idx = dfa->nodes_len - 1; dfa->nodes[idx].duplicated && idx > 0; --idx)
-    {
-      if (org_node == dfa->org_indices[idx]
-	  && constraint == dfa->nodes[idx].constraint)
-	return idx; /* Found.  */
-    }
-  return -1; /* Not found.  */
-}
-
-/* Duplicate the node whose index is ORG_IDX and set the constraint CONSTRAINT.
-   Return the index of the new node, or -1 if insufficient storage is
-   available.  */
-
-static int
-duplicate_node (re_dfa_t *dfa, int org_idx, unsigned int constraint)
-{
-  int dup_idx = re_dfa_add_node (dfa, dfa->nodes[org_idx]);
-  if (BE (dup_idx != -1, 1))
-    {
-      dfa->nodes[dup_idx].constraint = constraint;
-      dfa->nodes[dup_idx].constraint |= dfa->nodes[org_idx].constraint;
-      dfa->nodes[dup_idx].duplicated = 1;
-
-      /* Store the index of the original node.  */
-      dfa->org_indices[dup_idx] = org_idx;
-    }
-  return dup_idx;
-}
-
-static reg_errcode_t
-calc_inveclosure (re_dfa_t *dfa)
-{
-  int src, idx, ret;
-  for (idx = 0; idx < dfa->nodes_len; ++idx)
-    re_node_set_init_empty (dfa->inveclosures + idx);
-
-  for (src = 0; src < dfa->nodes_len; ++src)
-    {
-      int *elems = dfa->eclosures[src].elems;
-      for (idx = 0; idx < dfa->eclosures[src].nelem; ++idx)
-	{
-	  ret = re_node_set_insert_last (dfa->inveclosures + elems[idx], src);
-	  if (BE (ret == -1, 0))
-	    return REG_ESPACE;
-	}
-    }
-
-  return REG_NOERROR;
-}
-
-/* Calculate "eclosure" for all the node in DFA.  */
-
-static reg_errcode_t
-calc_eclosure (re_dfa_t *dfa)
-{
-  int node_idx, incomplete;
-#ifdef DEBUG
-  assert (dfa->nodes_len > 0);
-#endif
-  incomplete = 0;
-  /* For each nodes, calculate epsilon closure.  */
-  for (node_idx = 0; ; ++node_idx)
-    {
-      reg_errcode_t err;
-      re_node_set eclosure_elem;
-      if (node_idx == dfa->nodes_len)
-	{
-	  if (!incomplete)
-	    break;
-	  incomplete = 0;
-	  node_idx = 0;
-	}
-
-#ifdef DEBUG
-      assert (dfa->eclosures[node_idx].nelem != -1);
-#endif
-
-      /* If we have already calculated, skip it.  */
-      if (dfa->eclosures[node_idx].nelem != 0)
-	continue;
-      /* Calculate epsilon closure of `node_idx'.  */
-      err = calc_eclosure_iter (&eclosure_elem, dfa, node_idx, 1);
-      if (BE (err != REG_NOERROR, 0))
-	return err;
-
-      if (dfa->eclosures[node_idx].nelem == 0)
-	{
-	  incomplete = 1;
-	  re_node_set_free (&eclosure_elem);
-	}
-    }
-  return REG_NOERROR;
-}
-
-/* Calculate epsilon closure of NODE.  */
-
-static reg_errcode_t
-calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, int node, int root)
-{
-  reg_errcode_t err;
-  int i, incomplete;
-  re_node_set eclosure;
-  incomplete = 0;
-  err = re_node_set_alloc (&eclosure, dfa->edests[node].nelem + 1);
-  if (BE (err != REG_NOERROR, 0))
-    return err;
-
-  /* This indicates that we are calculating this node now.
-     We reference this value to avoid infinite loop.  */
-  dfa->eclosures[node].nelem = -1;
-
-  /* If the current node has constraints, duplicate all nodes
-     since they must inherit the constraints.  */
-  if (dfa->nodes[node].constraint
-      && dfa->edests[node].nelem
-      && !dfa->nodes[dfa->edests[node].elems[0]].duplicated)
-    {
-      err = duplicate_node_closure (dfa, node, node, node,
-				    dfa->nodes[node].constraint);
-      if (BE (err != REG_NOERROR, 0))
-	return err;
-    }
-
-  /* Expand each epsilon destination nodes.  */
-  if (IS_EPSILON_NODE(dfa->nodes[node].type))
-    for (i = 0; i < dfa->edests[node].nelem; ++i)
-      {
-	re_node_set eclosure_elem;
-	int edest = dfa->edests[node].elems[i];
-	/* If calculating the epsilon closure of `edest' is in progress,
-	   return intermediate result.  */
-	if (dfa->eclosures[edest].nelem == -1)
-	  {
-	    incomplete = 1;
-	    continue;
-	  }
-	/* If we haven't calculated the epsilon closure of `edest' yet,
-	   calculate now. Otherwise use calculated epsilon closure.  */
-	if (dfa->eclosures[edest].nelem == 0)
-	  {
-	    err = calc_eclosure_iter (&eclosure_elem, dfa, edest, 0);
-	    if (BE (err != REG_NOERROR, 0))
-	      return err;
-	  }
-	else
-	  eclosure_elem = dfa->eclosures[edest];
-	/* Merge the epsilon closure of `edest'.  */
-	re_node_set_merge (&eclosure, &eclosure_elem);
-	/* If the epsilon closure of `edest' is incomplete,
-	   the epsilon closure of this node is also incomplete.  */
-	if (dfa->eclosures[edest].nelem == 0)
-	  {
-	    incomplete = 1;
-	    re_node_set_free (&eclosure_elem);
-	  }
-      }
-
-  /* Epsilon closures include itself.  */
-  re_node_set_insert (&eclosure, node);
-  if (incomplete && !root)
-    dfa->eclosures[node].nelem = 0;
-  else
-    dfa->eclosures[node] = eclosure;
-  *new_set = eclosure;
-  return REG_NOERROR;
-}
-
-/* Functions for token which are used in the parser.  */
-
-/* Fetch a token from INPUT.
-   We must not use this function inside bracket expressions.  */
-
-static void
-internal_function
-fetch_token (re_token_t *result, re_string_t *input, reg_syntax_t syntax)
-{
-  re_string_skip_bytes (input, peek_token (result, input, syntax));
-}
-
-/* Peek a token from INPUT, and return the length of the token.
-   We must not use this function inside bracket expressions.  */
-
-static int
-internal_function
-peek_token (re_token_t *token, re_string_t *input, reg_syntax_t syntax)
-{
-  unsigned char c;
-
-  if (re_string_eoi (input))
-    {
-      token->type = END_OF_RE;
-      return 0;
-    }
-
-  c = re_string_peek_byte (input, 0);
-  token->opr.c = c;
-
-  token->word_char = 0;
-#ifdef RE_ENABLE_I18N
-  token->mb_partial = 0;
-  if (input->mb_cur_max > 1 &&
-      !re_string_first_byte (input, re_string_cur_idx (input)))
-    {
-      token->type = CHARACTER;
-      token->mb_partial = 1;
-      return 1;
-    }
-#endif
-  if (c == '\\')
-    {
-      unsigned char c2;
-      if (re_string_cur_idx (input) + 1 >= re_string_length (input))
-	{
-	  token->type = BACK_SLASH;
-	  return 1;
-	}
-
-      c2 = re_string_peek_byte_case (input, 1);
-      token->opr.c = c2;
-      token->type = CHARACTER;
-#ifdef RE_ENABLE_I18N
-      if (input->mb_cur_max > 1)
-	{
-	  wint_t wc = re_string_wchar_at (input,
-					  re_string_cur_idx (input) + 1);
-	  token->word_char = IS_WIDE_WORD_CHAR (wc) != 0;
-	}
-      else
-#endif
-	token->word_char = IS_WORD_CHAR (c2) != 0;
-
-      switch (c2)
-	{
-	case '|':
-	  if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_NO_BK_VBAR))
-	    token->type = OP_ALT;
-	  break;
-	case '1': case '2': case '3': case '4': case '5':
-	case '6': case '7': case '8': case '9':
-	  if (!(syntax & RE_NO_BK_REFS))
-	    {
-	      token->type = OP_BACK_REF;
-	      token->opr.idx = c2 - '1';
-	    }
-	  break;
-	case '<':
-	  if (!(syntax & RE_NO_GNU_OPS))
-	    {
-	      token->type = ANCHOR;
-	      token->opr.ctx_type = WORD_FIRST;
-	    }
-	  break;
-	case '>':
-	  if (!(syntax & RE_NO_GNU_OPS))
-	    {
-	      token->type = ANCHOR;
-	      token->opr.ctx_type = WORD_LAST;
-	    }
-	  break;
-	case 'b':
-	  if (!(syntax & RE_NO_GNU_OPS))
-	    {
-	      token->type = ANCHOR;
-	      token->opr.ctx_type = WORD_DELIM;
-	    }
-	  break;
-	case 'B':
-	  if (!(syntax & RE_NO_GNU_OPS))
-	    {
-	      token->type = ANCHOR;
-	      token->opr.ctx_type = NOT_WORD_DELIM;
-	    }
-	  break;
-	case 'w':
-	  if (!(syntax & RE_NO_GNU_OPS))
-	    token->type = OP_WORD;
-	  break;
-	case 'W':
-	  if (!(syntax & RE_NO_GNU_OPS))
-	    token->type = OP_NOTWORD;
-	  break;
-	case 's':
-	  if (!(syntax & RE_NO_GNU_OPS))
-	    token->type = OP_SPACE;
-	  break;
-	case 'S':
-	  if (!(syntax & RE_NO_GNU_OPS))
-	    token->type = OP_NOTSPACE;
-	  break;
-	case '`':
-	  if (!(syntax & RE_NO_GNU_OPS))
-	    {
-	      token->type = ANCHOR;
-	      token->opr.ctx_type = BUF_FIRST;
-	    }
-	  break;
-	case '\'':
-	  if (!(syntax & RE_NO_GNU_OPS))
-	    {
-	      token->type = ANCHOR;
-	      token->opr.ctx_type = BUF_LAST;
-	    }
-	  break;
-	case '(':
-	  if (!(syntax & RE_NO_BK_PARENS))
-	    token->type = OP_OPEN_SUBEXP;
-	  break;
-	case ')':
-	  if (!(syntax & RE_NO_BK_PARENS))
-	    token->type = OP_CLOSE_SUBEXP;
-	  break;
-	case '+':
-	  if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM))
-	    token->type = OP_DUP_PLUS;
-	  break;
-	case '?':
-	  if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM))
-	    token->type = OP_DUP_QUESTION;
-	  break;
-	case '{':
-	  if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES)))
-	    token->type = OP_OPEN_DUP_NUM;
-	  break;
-	case '}':
-	  if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES)))
-	    token->type = OP_CLOSE_DUP_NUM;
-	  break;
-	default:
-	  break;
-	}
-      return 2;
-    }
-
-  token->type = CHARACTER;
-#ifdef RE_ENABLE_I18N
-  if (input->mb_cur_max > 1)
-    {
-      wint_t wc = re_string_wchar_at (input, re_string_cur_idx (input));
-      token->word_char = IS_WIDE_WORD_CHAR (wc) != 0;
-    }
-  else
-#endif
-    token->word_char = IS_WORD_CHAR (token->opr.c);
-
-  switch (c)
-    {
-    case '\n':
-      if (syntax & RE_NEWLINE_ALT)
-	token->type = OP_ALT;
-      break;
-    case '|':
-      if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_NO_BK_VBAR))
-	token->type = OP_ALT;
-      break;
-    case '*':
-      token->type = OP_DUP_ASTERISK;
-      break;
-    case '+':
-      if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM))
-	token->type = OP_DUP_PLUS;
-      break;
-    case '?':
-      if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM))
-	token->type = OP_DUP_QUESTION;
-      break;
-    case '{':
-      if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
-	token->type = OP_OPEN_DUP_NUM;
-      break;
-    case '}':
-      if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
-	token->type = OP_CLOSE_DUP_NUM;
-      break;
-    case '(':
-      if (syntax & RE_NO_BK_PARENS)
-	token->type = OP_OPEN_SUBEXP;
-      break;
-    case ')':
-      if (syntax & RE_NO_BK_PARENS)
-	token->type = OP_CLOSE_SUBEXP;
-      break;
-    case '[':
-      token->type = OP_OPEN_BRACKET;
-      break;
-    case '.':
-      token->type = OP_PERIOD;
-      break;
-    case '^':
-      if (!(syntax & (RE_CONTEXT_INDEP_ANCHORS | RE_CARET_ANCHORS_HERE)) &&
-	  re_string_cur_idx (input) != 0)
-	{
-	  char prev = re_string_peek_byte (input, -1);
-	  if (!(syntax & RE_NEWLINE_ALT) || prev != '\n')
-	    break;
-	}
-      token->type = ANCHOR;
-      token->opr.ctx_type = LINE_FIRST;
-      break;
-    case '$':
-      if (!(syntax & RE_CONTEXT_INDEP_ANCHORS) &&
-	  re_string_cur_idx (input) + 1 != re_string_length (input))
-	{
-	  re_token_t next;
-	  re_string_skip_bytes (input, 1);
-	  peek_token (&next, input, syntax);
-	  re_string_skip_bytes (input, -1);
-	  if (next.type != OP_ALT && next.type != OP_CLOSE_SUBEXP)
-	    break;
-	}
-      token->type = ANCHOR;
-      token->opr.ctx_type = LINE_LAST;
-      break;
-    default:
-      break;
-    }
-  return 1;
-}
-
-/* Peek a token from INPUT, and return the length of the token.
-   We must not use this function out of bracket expressions.  */
-
-static int
-internal_function
-peek_token_bracket (re_token_t *token, re_string_t *input, reg_syntax_t syntax)
-{
-  unsigned char c;
-  if (re_string_eoi (input))
-    {
-      token->type = END_OF_RE;
-      return 0;
-    }
-  c = re_string_peek_byte (input, 0);
-  token->opr.c = c;
-
-#ifdef RE_ENABLE_I18N
-  if (input->mb_cur_max > 1 &&
-      !re_string_first_byte (input, re_string_cur_idx (input)))
-    {
-      token->type = CHARACTER;
-      return 1;
-    }
-#endif /* RE_ENABLE_I18N */
-
-  if (c == '\\' && (syntax & RE_BACKSLASH_ESCAPE_IN_LISTS)
-      && re_string_cur_idx (input) + 1 < re_string_length (input))
-    {
-      /* In this case, '\' escape a character.  */
-      unsigned char c2;
-      re_string_skip_bytes (input, 1);
-      c2 = re_string_peek_byte (input, 0);
-      token->opr.c = c2;
-      token->type = CHARACTER;
-      return 1;
-    }
-  if (c == '[') /* '[' is a special char in a bracket exps.  */
-    {
-      unsigned char c2;
-      int token_len;
-      if (re_string_cur_idx (input) + 1 < re_string_length (input))
-	c2 = re_string_peek_byte (input, 1);
-      else
-	c2 = 0;
-      token->opr.c = c2;
-      token_len = 2;
-      switch (c2)
-	{
-	case '.':
-	  token->type = OP_OPEN_COLL_ELEM;
-	  break;
-	case '=':
-	  token->type = OP_OPEN_EQUIV_CLASS;
-	  break;
-	case ':':
-	  if (syntax & RE_CHAR_CLASSES)
-	    {
-	      token->type = OP_OPEN_CHAR_CLASS;
-	      break;
-	    }
-	  /* else fall through.  */
-	default:
-	  token->type = CHARACTER;
-	  token->opr.c = c;
-	  token_len = 1;
-	  break;
-	}
-      return token_len;
-    }
-  switch (c)
-    {
-    case '-':
-      token->type = OP_CHARSET_RANGE;
-      break;
-    case ']':
-      token->type = OP_CLOSE_BRACKET;
-      break;
-    case '^':
-      token->type = OP_NON_MATCH_LIST;
-      break;
-    default:
-      token->type = CHARACTER;
-    }
-  return 1;
-}
-
-/* Functions for parser.  */
-
-/* Entry point of the parser.
-   Parse the regular expression REGEXP and return the structure tree.
-   If an error is occured, ERR is set by error code, and return NULL.
-   This function build the following tree, from regular expression <reg_exp>:
-	   CAT
-	   / \
-	  /   \
-   <reg_exp>  EOR
-
-   CAT means concatenation.
-   EOR means end of regular expression.  */
-
-static bin_tree_t *
-parse (re_string_t *regexp, regex_t *preg, reg_syntax_t syntax,
-       reg_errcode_t *err)
-{
-  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
-  bin_tree_t *tree, *eor, *root;
-  re_token_t current_token;
-  dfa->syntax = syntax;
-  fetch_token (&current_token, regexp, syntax | RE_CARET_ANCHORS_HERE);
-  tree = parse_reg_exp (regexp, preg, &current_token, syntax, 0, err);
-  if (BE (*err != REG_NOERROR && tree == NULL, 0))
-    return NULL;
-  eor = create_tree (dfa, NULL, NULL, END_OF_RE);
-  if (tree != NULL)
-    root = create_tree (dfa, tree, eor, CONCAT);
-  else
-    root = eor;
-  if (BE (eor == NULL || root == NULL, 0))
-    {
-      *err = REG_ESPACE;
-      return NULL;
-    }
-  return root;
-}
-
-/* This function build the following tree, from regular expression
-   <branch1>|<branch2>:
-	   ALT
-	   / \
-	  /   \
-   <branch1> <branch2>
-
-   ALT means alternative, which represents the operator `|'.  */
-
-static bin_tree_t *
-parse_reg_exp (re_string_t *regexp, regex_t *preg, re_token_t *token,
-	       reg_syntax_t syntax, int nest, reg_errcode_t *err)
-{
-  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
-  bin_tree_t *tree, *branch = NULL;
-  tree = parse_branch (regexp, preg, token, syntax, nest, err);
-  if (BE (*err != REG_NOERROR && tree == NULL, 0))
-    return NULL;
-
-  while (token->type == OP_ALT)
-    {
-      fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE);
-      if (token->type != OP_ALT && token->type != END_OF_RE
-	  && (nest == 0 || token->type != OP_CLOSE_SUBEXP))
-	{
-	  branch = parse_branch (regexp, preg, token, syntax, nest, err);
-	  if (BE (*err != REG_NOERROR && branch == NULL, 0))
-	    return NULL;
-	}
-      else
-	branch = NULL;
-      tree = create_tree (dfa, tree, branch, OP_ALT);
-      if (BE (tree == NULL, 0))
-	{
-	  *err = REG_ESPACE;
-	  return NULL;
-	}
-    }
-  return tree;
-}
-
-/* This function build the following tree, from regular expression
-   <exp1><exp2>:
-	CAT
-	/ \
-       /   \
-   <exp1> <exp2>
-
-   CAT means concatenation.  */
-
-static bin_tree_t *
-parse_branch (re_string_t *regexp, regex_t *preg, re_token_t *token,
-	      reg_syntax_t syntax, int nest, reg_errcode_t *err)
-{
-  bin_tree_t *tree, *exp;
-  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
-  tree = parse_expression (regexp, preg, token, syntax, nest, err);
-  if (BE (*err != REG_NOERROR && tree == NULL, 0))
-    return NULL;
-
-  while (token->type != OP_ALT && token->type != END_OF_RE
-	 && (nest == 0 || token->type != OP_CLOSE_SUBEXP))
-    {
-      exp = parse_expression (regexp, preg, token, syntax, nest, err);
-      if (BE (*err != REG_NOERROR && exp == NULL, 0))
-	{
-	  return NULL;
-	}
-      if (tree != NULL && exp != NULL)
-	{
-	  tree = create_tree (dfa, tree, exp, CONCAT);
-	  if (tree == NULL)
-	    {
-	      *err = REG_ESPACE;
-	      return NULL;
-	    }
-	}
-      else if (tree == NULL)
-	tree = exp;
-      /* Otherwise exp == NULL, we don't need to create new tree.  */
-    }
-  return tree;
-}
-
-/* This function build the following tree, from regular expression a*:
-	 *
-	 |
-	 a
-*/
-
-static bin_tree_t *
-parse_expression (re_string_t *regexp, regex_t *preg, re_token_t *token,
-		  reg_syntax_t syntax, int nest, reg_errcode_t *err)
-{
-  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
-  bin_tree_t *tree;
-  switch (token->type)
-    {
-    case CHARACTER:
-      tree = create_token_tree (dfa, NULL, NULL, token);
-      if (BE (tree == NULL, 0))
-	{
-	  *err = REG_ESPACE;
-	  return NULL;
-	}
-#ifdef RE_ENABLE_I18N
-      if (dfa->mb_cur_max > 1)
-	{
-	  while (!re_string_eoi (regexp)
-		 && !re_string_first_byte (regexp, re_string_cur_idx (regexp)))
-	    {
-	      bin_tree_t *mbc_remain;
-	      fetch_token (token, regexp, syntax);
-	      mbc_remain = create_token_tree (dfa, NULL, NULL, token);
-	      tree = create_tree (dfa, tree, mbc_remain, CONCAT);
-	      if (BE (mbc_remain == NULL || tree == NULL, 0))
-		{
-		  *err = REG_ESPACE;
-		  return NULL;
-		}
-	    }
-	}
-#endif
-      break;
-    case OP_OPEN_SUBEXP:
-      tree = parse_sub_exp (regexp, preg, token, syntax, nest + 1, err);
-      if (BE (*err != REG_NOERROR && tree == NULL, 0))
-	return NULL;
-      break;
-    case OP_OPEN_BRACKET:
-      tree = parse_bracket_exp (regexp, dfa, token, syntax, err);
-      if (BE (*err != REG_NOERROR && tree == NULL, 0))
-	return NULL;
-      break;
-    case OP_BACK_REF:
-      if (!BE (dfa->completed_bkref_map & (1 << token->opr.idx), 1))
-	{
-	  *err = REG_ESUBREG;
-	  return NULL;
-	}
-      dfa->used_bkref_map |= 1 << token->opr.idx;
-      tree = create_token_tree (dfa, NULL, NULL, token);
-      if (BE (tree == NULL, 0))
-	{
-	  *err = REG_ESPACE;
-	  return NULL;
-	}
-      ++dfa->nbackref;
-      dfa->has_mb_node = 1;
-      break;
-    case OP_OPEN_DUP_NUM:
-      if (syntax & RE_CONTEXT_INVALID_DUP)
-	{
-	  *err = REG_BADRPT;
-	  return NULL;
-	}
-      /* FALLTHROUGH */
-    case OP_DUP_ASTERISK:
-    case OP_DUP_PLUS:
-    case OP_DUP_QUESTION:
-      if (syntax & RE_CONTEXT_INVALID_OPS)
-	{
-	  *err = REG_BADRPT;
-	  return NULL;
-	}
-      else if (syntax & RE_CONTEXT_INDEP_OPS)
-	{
-	  fetch_token (token, regexp, syntax);
-	  return parse_expression (regexp, preg, token, syntax, nest, err);
-	}
-      /* else fall through  */
-    case OP_CLOSE_SUBEXP:
-      if ((token->type == OP_CLOSE_SUBEXP) &&
-	  !(syntax & RE_UNMATCHED_RIGHT_PAREN_ORD))
-	{
-	  *err = REG_ERPAREN;
-	  return NULL;
-	}
-      /* else fall through  */
-    case OP_CLOSE_DUP_NUM:
-      /* We treat it as a normal character.  */
-
-      /* Then we can these characters as normal characters.  */
-      token->type = CHARACTER;
-      /* mb_partial and word_char bits should be initialized already
-	 by peek_token.  */
-      tree = create_token_tree (dfa, NULL, NULL, token);
-      if (BE (tree == NULL, 0))
-	{
-	  *err = REG_ESPACE;
-	  return NULL;
-	}
-      break;
-    case ANCHOR:
-      if ((token->opr.ctx_type
-	   & (WORD_DELIM | NOT_WORD_DELIM | WORD_FIRST | WORD_LAST))
-	  && dfa->word_ops_used == 0)
-	init_word_char (dfa);
-      if (token->opr.ctx_type == WORD_DELIM
-          || token->opr.ctx_type == NOT_WORD_DELIM)
-	{
-	  bin_tree_t *tree_first, *tree_last;
-	  if (token->opr.ctx_type == WORD_DELIM)
-	    {
-	      token->opr.ctx_type = WORD_FIRST;
-	      tree_first = create_token_tree (dfa, NULL, NULL, token);
-	      token->opr.ctx_type = WORD_LAST;
-            }
-          else
-            {
-	      token->opr.ctx_type = INSIDE_WORD;
-	      tree_first = create_token_tree (dfa, NULL, NULL, token);
-	      token->opr.ctx_type = INSIDE_NOTWORD;
-            }
-	  tree_last = create_token_tree (dfa, NULL, NULL, token);
-	  tree = create_tree (dfa, tree_first, tree_last, OP_ALT);
-	  if (BE (tree_first == NULL || tree_last == NULL || tree == NULL, 0))
-	    {
-	      *err = REG_ESPACE;
-	      return NULL;
-	    }
-	}
-      else
-	{
-	  tree = create_token_tree (dfa, NULL, NULL, token);
-	  if (BE (tree == NULL, 0))
-	    {
-	      *err = REG_ESPACE;
-	      return NULL;
-	    }
-	}
-      /* We must return here, since ANCHORs can't be followed
-	 by repetition operators.
-	 eg. RE"^*" is invalid or "<ANCHOR(^)><CHAR(*)>",
-	     it must not be "<ANCHOR(^)><REPEAT(*)>".  */
-      fetch_token (token, regexp, syntax);
-      return tree;
-    case OP_PERIOD:
-      tree = create_token_tree (dfa, NULL, NULL, token);
-      if (BE (tree == NULL, 0))
-	{
-	  *err = REG_ESPACE;
-	  return NULL;
-	}
-      if (dfa->mb_cur_max > 1)
-	dfa->has_mb_node = 1;
-      break;
-    case OP_WORD:
-    case OP_NOTWORD:
-      tree = build_charclass_op (dfa, regexp->trans,
-				 (const unsigned char *) "alnum",
-				 (const unsigned char *) "_",
-				 token->type == OP_NOTWORD, err);
-      if (BE (*err != REG_NOERROR && tree == NULL, 0))
-	return NULL;
-      break;
-    case OP_SPACE:
-    case OP_NOTSPACE:
-      tree = build_charclass_op (dfa, regexp->trans,
-				 (const unsigned char *) "space",
-				 (const unsigned char *) "",
-				 token->type == OP_NOTSPACE, err);
-      if (BE (*err != REG_NOERROR && tree == NULL, 0))
-	return NULL;
-      break;
-    case OP_ALT:
-    case END_OF_RE:
-      return NULL;
-    case BACK_SLASH:
-      *err = REG_EESCAPE;
-      return NULL;
-    default:
-      /* Must not happen?  */
-#ifdef DEBUG
-      assert (0);
-#endif
-      return NULL;
-    }
-  fetch_token (token, regexp, syntax);
-
-  while (token->type == OP_DUP_ASTERISK || token->type == OP_DUP_PLUS
-	 || token->type == OP_DUP_QUESTION || token->type == OP_OPEN_DUP_NUM)
-    {
-      tree = parse_dup_op (tree, regexp, dfa, token, syntax, err);
-      if (BE (*err != REG_NOERROR && tree == NULL, 0))
-	return NULL;
-      /* In BRE consecutive duplications are not allowed.  */
-      if ((syntax & RE_CONTEXT_INVALID_DUP)
-	  && (token->type == OP_DUP_ASTERISK
-	      || token->type == OP_OPEN_DUP_NUM))
-	{
-	  *err = REG_BADRPT;
-	  return NULL;
-	}
-    }
-
-  return tree;
-}
-
-/* This function build the following tree, from regular expression
-   (<reg_exp>):
-	 SUBEXP
-	    |
-	<reg_exp>
-*/
-
-static bin_tree_t *
-parse_sub_exp (re_string_t *regexp, regex_t *preg, re_token_t *token,
-	       reg_syntax_t syntax, int nest, reg_errcode_t *err)
-{
-  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
-  bin_tree_t *tree;
-  size_t cur_nsub;
-  cur_nsub = preg->re_nsub++;
-
-  fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE);
-
-  /* The subexpression may be a null string.  */
-  if (token->type == OP_CLOSE_SUBEXP)
-    tree = NULL;
-  else
-    {
-      tree = parse_reg_exp (regexp, preg, token, syntax, nest, err);
-      if (BE (*err == REG_NOERROR && token->type != OP_CLOSE_SUBEXP, 0))
-        *err = REG_EPAREN;
-      if (BE (*err != REG_NOERROR, 0))
-	return NULL;
-    }
-
-  if (cur_nsub <= '9' - '1')
-    dfa->completed_bkref_map |= 1 << cur_nsub;
-
-  tree = create_tree (dfa, tree, NULL, SUBEXP);
-  if (BE (tree == NULL, 0))
-    {
-      *err = REG_ESPACE;
-      return NULL;
-    }
-  tree->token.opr.idx = cur_nsub;
-  return tree;
-}
-
-/* This function parse repetition operators like "*", "+", "{1,3}" etc.  */
-
-static bin_tree_t *
-parse_dup_op (bin_tree_t *elem, re_string_t *regexp, re_dfa_t *dfa,
-	      re_token_t *token, reg_syntax_t syntax, reg_errcode_t *err)
-{
-  bin_tree_t *tree = NULL, *old_tree = NULL;
-  int i, start, end, start_idx = re_string_cur_idx (regexp);
-  re_token_t start_token = *token;
-
-  if (token->type == OP_OPEN_DUP_NUM)
-    {
-      end = 0;
-      start = fetch_number (regexp, token, syntax);
-      if (start == -1)
-	{
-	  if (token->type == CHARACTER && token->opr.c == ',')
-	    start = 0; /* We treat "{,m}" as "{0,m}".  */
-	  else
-	    {
-	      *err = REG_BADBR; /* <re>{} is invalid.  */
-	      return NULL;
-	    }
-	}
-      if (BE (start != -2, 1))
-	{
-	  /* We treat "{n}" as "{n,n}".  */
-	  end = ((token->type == OP_CLOSE_DUP_NUM) ? start
-		 : ((token->type == CHARACTER && token->opr.c == ',')
-		    ? fetch_number (regexp, token, syntax) : -2));
-	}
-      if (BE (start == -2 || end == -2, 0))
-	{
-	  /* Invalid sequence.  */
-	  if (BE (!(syntax & RE_INVALID_INTERVAL_ORD), 0))
-	    {
-	      if (token->type == END_OF_RE)
-		*err = REG_EBRACE;
-	      else
-		*err = REG_BADBR;
-
-	      return NULL;
-	    }
-
-	  /* If the syntax bit is set, rollback.  */
-	  re_string_set_index (regexp, start_idx);
-	  *token = start_token;
-	  token->type = CHARACTER;
-	  /* mb_partial and word_char bits should be already initialized by
-	     peek_token.  */
-	  return elem;
-	}
-
-      if (BE ((end != -1 && start > end) || token->type != OP_CLOSE_DUP_NUM, 0))
-	{
-	  /* First number greater than second.  */
-	  *err = REG_BADBR;
-	  return NULL;
-	}
-    }
-  else
-    {
-      start = (token->type == OP_DUP_PLUS) ? 1 : 0;
-      end = (token->type == OP_DUP_QUESTION) ? 1 : -1;
-    }
-
-  fetch_token (token, regexp, syntax);
-
-  if (BE (elem == NULL, 0))
-    return NULL;
-  if (BE (start == 0 && end == 0, 0))
-    {
-      postorder (elem, free_tree, NULL);
-      return NULL;
-    }
-
-  /* Extract "<re>{n,m}" to "<re><re>...<re><re>{0,<m-n>}".  */
-  if (BE (start > 0, 0))
-    {
-      tree = elem;
-      for (i = 2; i <= start; ++i)
-	{
-	  elem = duplicate_tree (elem, dfa);
-	  tree = create_tree (dfa, tree, elem, CONCAT);
-	  if (BE (elem == NULL || tree == NULL, 0))
-	    goto parse_dup_op_espace;
-	}
-
-      if (start == end)
-	return tree;
-
-      /* Duplicate ELEM before it is marked optional.  */
-      elem = duplicate_tree (elem, dfa);
-      old_tree = tree;
-    }
-  else
-    old_tree = NULL;
-
-  if (elem->token.type == SUBEXP)
-    postorder (elem, mark_opt_subexp, (void *) (long) elem->token.opr.idx);
-
-  tree = create_tree (dfa, elem, NULL, (end == -1 ? OP_DUP_ASTERISK : OP_ALT));
-  if (BE (tree == NULL, 0))
-    goto parse_dup_op_espace;
-
-  /* This loop is actually executed only when end != -1,
-     to rewrite <re>{0,n} as (<re>(<re>...<re>?)?)?...  We have
-     already created the start+1-th copy.  */
-  for (i = start + 2; i <= end; ++i)
-    {
-      elem = duplicate_tree (elem, dfa);
-      tree = create_tree (dfa, tree, elem, CONCAT);
-      if (BE (elem == NULL || tree == NULL, 0))
-        goto parse_dup_op_espace;
-
-      tree = create_tree (dfa, tree, NULL, OP_ALT);
-      if (BE (tree == NULL, 0))
-        goto parse_dup_op_espace;
-    }
-
-  if (old_tree)
-    tree = create_tree (dfa, old_tree, tree, CONCAT);
-
-  return tree;
-
- parse_dup_op_espace:
-  *err = REG_ESPACE;
-  return NULL;
-}
-
-/* Size of the names for collating symbol/equivalence_class/character_class.
-   I'm not sure, but maybe enough.  */
-#define BRACKET_NAME_BUF_SIZE 32
-
-#ifndef _LIBC
-  /* Local function for parse_bracket_exp only used in case of NOT _LIBC.
-     Build the range expression which starts from START_ELEM, and ends
-     at END_ELEM.  The result are written to MBCSET and SBCSET.
-     RANGE_ALLOC is the allocated size of mbcset->range_starts, and
-     mbcset->range_ends, is a pointer argument sinse we may
-     update it.  */
-
-static reg_errcode_t
-internal_function
-# ifdef RE_ENABLE_I18N
-build_range_exp (bitset_t sbcset, re_charset_t *mbcset, int *range_alloc,
-		 bracket_elem_t *start_elem, bracket_elem_t *end_elem)
-# else /* not RE_ENABLE_I18N */
-build_range_exp (bitset_t sbcset, bracket_elem_t *start_elem,
-		 bracket_elem_t *end_elem)
-# endif /* not RE_ENABLE_I18N */
-{
-  unsigned int start_ch, end_ch;
-  /* Equivalence Classes and Character Classes can't be a range start/end.  */
-  if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS
-	  || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS,
-	  0))
-    return REG_ERANGE;
-
-  /* We can handle no multi character collating elements without libc
-     support.  */
-  if (BE ((start_elem->type == COLL_SYM
-	   && strlen ((char *) start_elem->opr.name) > 1)
-	  || (end_elem->type == COLL_SYM
-	      && strlen ((char *) end_elem->opr.name) > 1), 0))
-    return REG_ECOLLATE;
-
-# ifdef RE_ENABLE_I18N
-  {
-    wchar_t wc;
-    wint_t start_wc;
-    wint_t end_wc;
-    wchar_t cmp_buf[6] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'};
-
-    start_ch = ((start_elem->type == SB_CHAR) ? start_elem->opr.ch
-		: ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0]
-		   : 0));
-    end_ch = ((end_elem->type == SB_CHAR) ? end_elem->opr.ch
-	      : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0]
-		 : 0));
-    start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM)
-		? __btowc (start_ch) : start_elem->opr.wch);
-    end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM)
-	      ? __btowc (end_ch) : end_elem->opr.wch);
-    if (start_wc == WEOF || end_wc == WEOF)
-      return REG_ECOLLATE;
-    cmp_buf[0] = start_wc;
-    cmp_buf[4] = end_wc;
-    if (wcscoll (cmp_buf, cmp_buf + 4) > 0)
-      return REG_ERANGE;
-
-    /* Got valid collation sequence values, add them as a new entry.
-       However, for !_LIBC we have no collation elements: if the
-       character set is single byte, the single byte character set
-       that we build below suffices.  parse_bracket_exp passes
-       no MBCSET if dfa->mb_cur_max == 1.  */
-    if (mbcset)
-      {
-        /* Check the space of the arrays.  */
-        if (BE (*range_alloc == mbcset->nranges, 0))
-          {
-	    /* There is not enough space, need realloc.  */
-	    wchar_t *new_array_start, *new_array_end;
-	    int new_nranges;
-
-	    /* +1 in case of mbcset->nranges is 0.  */
-	    new_nranges = 2 * mbcset->nranges + 1;
-	    /* Use realloc since mbcset->range_starts and mbcset->range_ends
-	       are NULL if *range_alloc == 0.  */
-	    new_array_start = re_realloc (mbcset->range_starts, wchar_t,
-				          new_nranges);
-	    new_array_end = re_realloc (mbcset->range_ends, wchar_t,
-				        new_nranges);
-
-	    if (BE (new_array_start == NULL || new_array_end == NULL, 0))
-	      return REG_ESPACE;
-
-	    mbcset->range_starts = new_array_start;
-	    mbcset->range_ends = new_array_end;
-	    *range_alloc = new_nranges;
-          }
-
-        mbcset->range_starts[mbcset->nranges] = start_wc;
-        mbcset->range_ends[mbcset->nranges++] = end_wc;
-      }
-
-    /* Build the table for single byte characters.  */
-    for (wc = 0; wc < SBC_MAX; ++wc)
-      {
-	cmp_buf[2] = wc;
-	if (wcscoll (cmp_buf, cmp_buf + 2) <= 0
-	    && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0)
-	  bitset_set (sbcset, wc);
-      }
-  }
-# else /* not RE_ENABLE_I18N */
-  {
-    unsigned int ch;
-    start_ch = ((start_elem->type == SB_CHAR ) ? start_elem->opr.ch
-		: ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0]
-		   : 0));
-    end_ch = ((end_elem->type == SB_CHAR ) ? end_elem->opr.ch
-	      : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0]
-		 : 0));
-    if (start_ch > end_ch)
-      return REG_ERANGE;
-    /* Build the table for single byte characters.  */
-    for (ch = 0; ch < SBC_MAX; ++ch)
-      if (start_ch <= ch  && ch <= end_ch)
-	bitset_set (sbcset, ch);
-  }
-# endif /* not RE_ENABLE_I18N */
-  return REG_NOERROR;
-}
-#endif /* not _LIBC */
-
-#ifndef _LIBC
-/* Helper function for parse_bracket_exp only used in case of NOT _LIBC..
-   Build the collating element which is represented by NAME.
-   The result are written to MBCSET and SBCSET.
-   COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a
-   pointer argument since we may update it.  */
-
-static reg_errcode_t
-internal_function
-# ifdef RE_ENABLE_I18N
-build_collating_symbol (bitset_t sbcset, re_charset_t *mbcset,
-			int *coll_sym_alloc, const unsigned char *name)
-# else /* not RE_ENABLE_I18N */
-build_collating_symbol (bitset_t sbcset, const unsigned char *name)
-# endif /* not RE_ENABLE_I18N */
-{
-  size_t name_len = strlen ((const char *) name);
-  if (BE (name_len != 1, 0))
-    return REG_ECOLLATE;
-  else
-    {
-      bitset_set (sbcset, name[0]);
-      return REG_NOERROR;
-    }
-}
-#endif /* not _LIBC */
-
-/* This function parse bracket expression like "[abc]", "[a-c]",
-   "[[.a-a.]]" etc.  */
-
-static bin_tree_t *
-parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, re_token_t *token,
-		   reg_syntax_t syntax, reg_errcode_t *err)
-{
-#ifdef _LIBC
-  const unsigned char *collseqmb;
-  const char *collseqwc;
-  uint32_t nrules;
-  int32_t table_size;
-  const int32_t *symb_table;
-  const unsigned char *extra;
-
-  /* Local function for parse_bracket_exp used in _LIBC environement.
-     Seek the collating symbol entry correspondings to NAME.
-     Return the index of the symbol in the SYMB_TABLE.  */
-
-  auto inline int32_t
-  __attribute ((always_inline))
-  seek_collating_symbol_entry (name, name_len)
-	 const unsigned char *name;
-	 size_t name_len;
-    {
-      int32_t hash = elem_hash ((const char *) name, name_len);
-      int32_t elem = hash % table_size;
-      if (symb_table[2 * elem] != 0)
-	{
-	  int32_t second = hash % (table_size - 2) + 1;
-
-	  do
-	    {
-	      /* First compare the hashing value.  */
-	      if (symb_table[2 * elem] == hash
-		  /* Compare the length of the name.  */
-		  && name_len == extra[symb_table[2 * elem + 1]]
-		  /* Compare the name.  */
-		  && memcmp (name, &extra[symb_table[2 * elem + 1] + 1],
-			     name_len) == 0)
-		{
-		  /* Yep, this is the entry.  */
-		  break;
-		}
-
-	      /* Next entry.  */
-	      elem += second;
-	    }
-	  while (symb_table[2 * elem] != 0);
-	}
-      return elem;
-    }
-
-  /* Local function for parse_bracket_exp used in _LIBC environment.
-     Look up the collation sequence value of BR_ELEM.
-     Return the value if succeeded, UINT_MAX otherwise.  */
-
-  auto inline unsigned int
-  __attribute ((always_inline))
-  lookup_collation_sequence_value (br_elem)
-	 bracket_elem_t *br_elem;
-    {
-      if (br_elem->type == SB_CHAR)
-	{
-	  /*
-	  if (MB_CUR_MAX == 1)
-	  */
-	  if (nrules == 0)
-	    return collseqmb[br_elem->opr.ch];
-	  else
-	    {
-	      wint_t wc = __btowc (br_elem->opr.ch);
-	      return __collseq_table_lookup (collseqwc, wc);
-	    }
-	}
-      else if (br_elem->type == MB_CHAR)
-	{
-	  if (nrules != 0)
-	    return __collseq_table_lookup (collseqwc, br_elem->opr.wch);
-	}
-      else if (br_elem->type == COLL_SYM)
-	{
-	  size_t sym_name_len = strlen ((char *) br_elem->opr.name);
-	  if (nrules != 0)
-	    {
-	      int32_t elem, idx;
-	      elem = seek_collating_symbol_entry (br_elem->opr.name,
-						  sym_name_len);
-	      if (symb_table[2 * elem] != 0)
-		{
-		  /* We found the entry.  */
-		  idx = symb_table[2 * elem + 1];
-		  /* Skip the name of collating element name.  */
-		  idx += 1 + extra[idx];
-		  /* Skip the byte sequence of the collating element.  */
-		  idx += 1 + extra[idx];
-		  /* Adjust for the alignment.  */
-		  idx = (idx + 3) & ~3;
-		  /* Skip the multibyte collation sequence value.  */
-		  idx += sizeof (unsigned int);
-		  /* Skip the wide char sequence of the collating element.  */
-		  idx += sizeof (unsigned int) *
-		    (1 + *(unsigned int *) (extra + idx));
-		  /* Return the collation sequence value.  */
-		  return *(unsigned int *) (extra + idx);
-		}
-	      else if (symb_table[2 * elem] == 0 && sym_name_len == 1)
-		{
-		  /* No valid character.  Match it as a single byte
-		     character.  */
-		  return collseqmb[br_elem->opr.name[0]];
-		}
-	    }
-	  else if (sym_name_len == 1)
-	    return collseqmb[br_elem->opr.name[0]];
-	}
-      return UINT_MAX;
-    }
-
-  /* Local function for parse_bracket_exp used in _LIBC environement.
-     Build the range expression which starts from START_ELEM, and ends
-     at END_ELEM.  The result are written to MBCSET and SBCSET.
-     RANGE_ALLOC is the allocated size of mbcset->range_starts, and
-     mbcset->range_ends, is a pointer argument sinse we may
-     update it.  */
-
-  auto inline reg_errcode_t
-  __attribute ((always_inline))
-  build_range_exp (sbcset, mbcset, range_alloc, start_elem, end_elem)
-	 re_charset_t *mbcset;
-	 int *range_alloc;
-	 bitset_t sbcset;
-	 bracket_elem_t *start_elem, *end_elem;
-    {
-      unsigned int ch;
-      uint32_t start_collseq;
-      uint32_t end_collseq;
-
-      /* Equivalence Classes and Character Classes can't be a range
-	 start/end.  */
-      if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS
-	      || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS,
-	      0))
-	return REG_ERANGE;
-
-      start_collseq = lookup_collation_sequence_value (start_elem);
-      end_collseq = lookup_collation_sequence_value (end_elem);
-      /* Check start/end collation sequence values.  */
-      if (BE (start_collseq == UINT_MAX || end_collseq == UINT_MAX, 0))
-	return REG_ECOLLATE;
-      if (BE ((syntax & RE_NO_EMPTY_RANGES) && start_collseq > end_collseq, 0))
-	return REG_ERANGE;
-
-      /* Got valid collation sequence values, add them as a new entry.
-	 However, if we have no collation elements, and the character set
-	 is single byte, the single byte character set that we
-	 build below suffices. */
-      if (nrules > 0 || dfa->mb_cur_max > 1)
-	{
-          /* Check the space of the arrays.  */
-          if (BE (*range_alloc == mbcset->nranges, 0))
-	    {
-	      /* There is not enough space, need realloc.  */
-	      uint32_t *new_array_start;
-	      uint32_t *new_array_end;
-	      int new_nranges;
-
-	      /* +1 in case of mbcset->nranges is 0.  */
-	      new_nranges = 2 * mbcset->nranges + 1;
-	      new_array_start = re_realloc (mbcset->range_starts, uint32_t,
-					    new_nranges);
-	      new_array_end = re_realloc (mbcset->range_ends, uint32_t,
-				          new_nranges);
-
-	      if (BE (new_array_start == NULL || new_array_end == NULL, 0))
-	        return REG_ESPACE;
-
-	      mbcset->range_starts = new_array_start;
-	      mbcset->range_ends = new_array_end;
-	      *range_alloc = new_nranges;
-	    }
-
-          mbcset->range_starts[mbcset->nranges] = start_collseq;
-          mbcset->range_ends[mbcset->nranges++] = end_collseq;
-	}
-
-      /* Build the table for single byte characters.  */
-      for (ch = 0; ch < SBC_MAX; ch++)
-	{
-	  uint32_t ch_collseq;
-	  /*
-	  if (MB_CUR_MAX == 1)
-	  */
-	  if (nrules == 0)
-	    ch_collseq = collseqmb[ch];
-	  else
-	    ch_collseq = __collseq_table_lookup (collseqwc, __btowc (ch));
-	  if (start_collseq <= ch_collseq && ch_collseq <= end_collseq)
-	    bitset_set (sbcset, ch);
-	}
-      return REG_NOERROR;
-    }
-
-  /* Local function for parse_bracket_exp used in _LIBC environement.
-     Build the collating element which is represented by NAME.
-     The result are written to MBCSET and SBCSET.
-     COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a
-     pointer argument sinse we may update it.  */
-
-  auto inline reg_errcode_t
-  __attribute ((always_inline))
-  build_collating_symbol (sbcset, mbcset, coll_sym_alloc, name)
-	 re_charset_t *mbcset;
-	 int *coll_sym_alloc;
-	 bitset_t sbcset;
-	 const unsigned char *name;
-    {
-      int32_t elem, idx;
-      size_t name_len = strlen ((const char *) name);
-      if (nrules != 0)
-	{
-	  elem = seek_collating_symbol_entry (name, name_len);
-	  if (symb_table[2 * elem] != 0)
-	    {
-	      /* We found the entry.  */
-	      idx = symb_table[2 * elem + 1];
-	      /* Skip the name of collating element name.  */
-	      idx += 1 + extra[idx];
-	    }
-	  else if (symb_table[2 * elem] == 0 && name_len == 1)
-	    {
-	      /* No valid character, treat it as a normal
-		 character.  */
-	      bitset_set (sbcset, name[0]);
-	      return REG_NOERROR;
-	    }
-	  else
-	    return REG_ECOLLATE;
-
-	  /* Got valid collation sequence, add it as a new entry.  */
-	  /* Check the space of the arrays.  */
-	  if (BE (*coll_sym_alloc == mbcset->ncoll_syms, 0))
-	    {
-	      /* Not enough, realloc it.  */
-	      /* +1 in case of mbcset->ncoll_syms is 0.  */
-	      int new_coll_sym_alloc = 2 * mbcset->ncoll_syms + 1;
-	      /* Use realloc since mbcset->coll_syms is NULL
-		 if *alloc == 0.  */
-	      int32_t *new_coll_syms = re_realloc (mbcset->coll_syms, int32_t,
-						   new_coll_sym_alloc);
-	      if (BE (new_coll_syms == NULL, 0))
-		return REG_ESPACE;
-	      mbcset->coll_syms = new_coll_syms;
-	      *coll_sym_alloc = new_coll_sym_alloc;
-	    }
-	  mbcset->coll_syms[mbcset->ncoll_syms++] = idx;
-	  return REG_NOERROR;
-	}
-      else
-	{
-	  if (BE (name_len != 1, 0))
-	    return REG_ECOLLATE;
-	  else
-	    {
-	      bitset_set (sbcset, name[0]);
-	      return REG_NOERROR;
-	    }
-	}
-    }
-#endif
-
-  re_token_t br_token;
-  re_bitset_ptr_t sbcset;
-#ifdef RE_ENABLE_I18N
-  re_charset_t *mbcset;
-  int coll_sym_alloc = 0, range_alloc = 0, mbchar_alloc = 0;
-  int equiv_class_alloc = 0, char_class_alloc = 0;
-#endif /* not RE_ENABLE_I18N */
-  int non_match = 0;
-  bin_tree_t *work_tree;
-  int token_len;
-  int first_round = 1;
-#ifdef _LIBC
-  collseqmb = (const unsigned char *)
-    _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB);
-  nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
-  if (nrules)
-    {
-      /*
-      if (MB_CUR_MAX > 1)
-      */
-      collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC);
-      table_size = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_SYMB_HASH_SIZEMB);
-      symb_table = (const int32_t *) _NL_CURRENT (LC_COLLATE,
-						  _NL_COLLATE_SYMB_TABLEMB);
-      extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
-						   _NL_COLLATE_SYMB_EXTRAMB);
-    }
-#endif
-  sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1);
-#ifdef RE_ENABLE_I18N
-  mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1);
-#endif /* RE_ENABLE_I18N */
-#ifdef RE_ENABLE_I18N
-  if (BE (sbcset == NULL || mbcset == NULL, 0))
-#else
-  if (BE (sbcset == NULL, 0))
-#endif /* RE_ENABLE_I18N */
-    {
-      *err = REG_ESPACE;
-      return NULL;
-    }
-
-  token_len = peek_token_bracket (token, regexp, syntax);
-  if (BE (token->type == END_OF_RE, 0))
-    {
-      *err = REG_BADPAT;
-      goto parse_bracket_exp_free_return;
-    }
-  if (token->type == OP_NON_MATCH_LIST)
-    {
-#ifdef RE_ENABLE_I18N
-      mbcset->non_match = 1;
-#endif /* not RE_ENABLE_I18N */
-      non_match = 1;
-      if (syntax & RE_HAT_LISTS_NOT_NEWLINE)
-	bitset_set (sbcset, '\n');
-      re_string_skip_bytes (regexp, token_len); /* Skip a token.  */
-      token_len = peek_token_bracket (token, regexp, syntax);
-      if (BE (token->type == END_OF_RE, 0))
-	{
-	  *err = REG_BADPAT;
-	  goto parse_bracket_exp_free_return;
-	}
-    }
-
-  /* We treat the first ']' as a normal character.  */
-  if (token->type == OP_CLOSE_BRACKET)
-    token->type = CHARACTER;
-
-  while (1)
-    {
-      bracket_elem_t start_elem, end_elem;
-      unsigned char start_name_buf[BRACKET_NAME_BUF_SIZE];
-      unsigned char end_name_buf[BRACKET_NAME_BUF_SIZE];
-      reg_errcode_t ret;
-      int token_len2 = 0, is_range_exp = 0;
-      re_token_t token2;
-
-      start_elem.opr.name = start_name_buf;
-      ret = parse_bracket_element (&start_elem, regexp, token, token_len, dfa,
-				   syntax, first_round);
-      if (BE (ret != REG_NOERROR, 0))
-	{
-	  *err = ret;
-	  goto parse_bracket_exp_free_return;
-	}
-      first_round = 0;
-
-      /* Get information about the next token.  We need it in any case.  */
-      token_len = peek_token_bracket (token, regexp, syntax);
-
-      /* Do not check for ranges if we know they are not allowed.  */
-      if (start_elem.type != CHAR_CLASS && start_elem.type != EQUIV_CLASS)
-	{
-	  if (BE (token->type == END_OF_RE, 0))
-	    {
-	      *err = REG_EBRACK;
-	      goto parse_bracket_exp_free_return;
-	    }
-	  if (token->type == OP_CHARSET_RANGE)
-	    {
-	      re_string_skip_bytes (regexp, token_len); /* Skip '-'.  */
-	      token_len2 = peek_token_bracket (&token2, regexp, syntax);
-	      if (BE (token2.type == END_OF_RE, 0))
-		{
-		  *err = REG_EBRACK;
-		  goto parse_bracket_exp_free_return;
-		}
-	      if (token2.type == OP_CLOSE_BRACKET)
-		{
-		  /* We treat the last '-' as a normal character.  */
-		  re_string_skip_bytes (regexp, -token_len);
-		  token->type = CHARACTER;
-		}
-	      else
-		is_range_exp = 1;
-	    }
-	}
-
-      if (is_range_exp == 1)
-	{
-	  end_elem.opr.name = end_name_buf;
-	  ret = parse_bracket_element (&end_elem, regexp, &token2, token_len2,
-				       dfa, syntax, 1);
-	  if (BE (ret != REG_NOERROR, 0))
-	    {
-	      *err = ret;
-	      goto parse_bracket_exp_free_return;
-	    }
-
-	  token_len = peek_token_bracket (token, regexp, syntax);
-
-#ifdef _LIBC
-	  *err = build_range_exp (sbcset, mbcset, &range_alloc,
-				  &start_elem, &end_elem);
-#else
-# ifdef RE_ENABLE_I18N
-	  *err = build_range_exp (sbcset,
-				  dfa->mb_cur_max > 1 ? mbcset : NULL,
-				  &range_alloc, &start_elem, &end_elem);
-# else
-	  *err = build_range_exp (sbcset, &start_elem, &end_elem);
-# endif
-#endif /* RE_ENABLE_I18N */
-	  if (BE (*err != REG_NOERROR, 0))
-	    goto parse_bracket_exp_free_return;
-	}
-      else
-	{
-	  switch (start_elem.type)
-	    {
-	    case SB_CHAR:
-	      bitset_set (sbcset, start_elem.opr.ch);
-	      break;
-#ifdef RE_ENABLE_I18N
-	    case MB_CHAR:
-	      /* Check whether the array has enough space.  */
-	      if (BE (mbchar_alloc == mbcset->nmbchars, 0))
-		{
-		  wchar_t *new_mbchars;
-		  /* Not enough, realloc it.  */
-		  /* +1 in case of mbcset->nmbchars is 0.  */
-		  mbchar_alloc = 2 * mbcset->nmbchars + 1;
-		  /* Use realloc since array is NULL if *alloc == 0.  */
-		  new_mbchars = re_realloc (mbcset->mbchars, wchar_t,
-					    mbchar_alloc);
-		  if (BE (new_mbchars == NULL, 0))
-		    goto parse_bracket_exp_espace;
-		  mbcset->mbchars = new_mbchars;
-		}
-	      mbcset->mbchars[mbcset->nmbchars++] = start_elem.opr.wch;
-	      break;
-#endif /* RE_ENABLE_I18N */
-	    case EQUIV_CLASS:
-	      *err = build_equiv_class (sbcset,
-#ifdef RE_ENABLE_I18N
-					mbcset, &equiv_class_alloc,
-#endif /* RE_ENABLE_I18N */
-					start_elem.opr.name);
-	      if (BE (*err != REG_NOERROR, 0))
-		goto parse_bracket_exp_free_return;
-	      break;
-	    case COLL_SYM:
-	      *err = build_collating_symbol (sbcset,
-#ifdef RE_ENABLE_I18N
-					     mbcset, &coll_sym_alloc,
-#endif /* RE_ENABLE_I18N */
-					     start_elem.opr.name);
-	      if (BE (*err != REG_NOERROR, 0))
-		goto parse_bracket_exp_free_return;
-	      break;
-	    case CHAR_CLASS:
-	      *err = build_charclass (regexp->trans, sbcset,
-#ifdef RE_ENABLE_I18N
-				      mbcset, &char_class_alloc,
-#endif /* RE_ENABLE_I18N */
-				      start_elem.opr.name, syntax);
-	      if (BE (*err != REG_NOERROR, 0))
-	       goto parse_bracket_exp_free_return;
-	      break;
-	    default:
-	      assert (0);
-	      break;
-	    }
-	}
-      if (BE (token->type == END_OF_RE, 0))
-	{
-	  *err = REG_EBRACK;
-	  goto parse_bracket_exp_free_return;
-	}
-      if (token->type == OP_CLOSE_BRACKET)
-	break;
-    }
-
-  re_string_skip_bytes (regexp, token_len); /* Skip a token.  */
-
-  /* If it is non-matching list.  */
-  if (non_match)
-    bitset_not (sbcset);
-
-#ifdef RE_ENABLE_I18N
-  /* Ensure only single byte characters are set.  */
-  if (dfa->mb_cur_max > 1)
-    bitset_mask (sbcset, dfa->sb_char);
-
-  if (mbcset->nmbchars || mbcset->ncoll_syms || mbcset->nequiv_classes
-      || mbcset->nranges || (dfa->mb_cur_max > 1 && (mbcset->nchar_classes
-						     || mbcset->non_match)))
-    {
-      bin_tree_t *mbc_tree;
-      int sbc_idx;
-      /* Build a tree for complex bracket.  */
-      dfa->has_mb_node = 1;
-      br_token.type = COMPLEX_BRACKET;
-      br_token.opr.mbcset = mbcset;
-      mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token);
-      if (BE (mbc_tree == NULL, 0))
-	goto parse_bracket_exp_espace;
-      for (sbc_idx = 0; sbc_idx < BITSET_WORDS; ++sbc_idx)
-	if (sbcset[sbc_idx])
-	  break;
-      /* If there are no bits set in sbcset, there is no point
-	 of having both SIMPLE_BRACKET and COMPLEX_BRACKET.  */
-      if (sbc_idx < BITSET_WORDS)
-	{
-          /* Build a tree for simple bracket.  */
-          br_token.type = SIMPLE_BRACKET;
-          br_token.opr.sbcset = sbcset;
-          work_tree = create_token_tree (dfa, NULL, NULL, &br_token);
-          if (BE (work_tree == NULL, 0))
-            goto parse_bracket_exp_espace;
-
-          /* Then join them by ALT node.  */
-          work_tree = create_tree (dfa, work_tree, mbc_tree, OP_ALT);
-          if (BE (work_tree == NULL, 0))
-            goto parse_bracket_exp_espace;
-	}
-      else
-	{
-	  re_free (sbcset);
-	  work_tree = mbc_tree;
-	}
-    }
-  else
-#endif /* not RE_ENABLE_I18N */
-    {
-#ifdef RE_ENABLE_I18N
-      free_charset (mbcset);
-#endif
-      /* Build a tree for simple bracket.  */
-      br_token.type = SIMPLE_BRACKET;
-      br_token.opr.sbcset = sbcset;
-      work_tree = create_token_tree (dfa, NULL, NULL, &br_token);
-      if (BE (work_tree == NULL, 0))
-        goto parse_bracket_exp_espace;
-    }
-  return work_tree;
-
- parse_bracket_exp_espace:
-  *err = REG_ESPACE;
- parse_bracket_exp_free_return:
-  re_free (sbcset);
-#ifdef RE_ENABLE_I18N
-  free_charset (mbcset);
-#endif /* RE_ENABLE_I18N */
-  return NULL;
-}
-
-/* Parse an element in the bracket expression.  */
-
-static reg_errcode_t
-parse_bracket_element (bracket_elem_t *elem, re_string_t *regexp,
-		       re_token_t *token, int token_len, re_dfa_t *dfa,
-		       reg_syntax_t syntax, int accept_hyphen)
-{
-#ifdef RE_ENABLE_I18N
-  int cur_char_size;
-  cur_char_size = re_string_char_size_at (regexp, re_string_cur_idx (regexp));
-  if (cur_char_size > 1)
-    {
-      elem->type = MB_CHAR;
-      elem->opr.wch = re_string_wchar_at (regexp, re_string_cur_idx (regexp));
-      re_string_skip_bytes (regexp, cur_char_size);
-      return REG_NOERROR;
-    }
-#endif /* RE_ENABLE_I18N */
-  re_string_skip_bytes (regexp, token_len); /* Skip a token.  */
-  if (token->type == OP_OPEN_COLL_ELEM || token->type == OP_OPEN_CHAR_CLASS
-      || token->type == OP_OPEN_EQUIV_CLASS)
-    return parse_bracket_symbol (elem, regexp, token);
-  if (BE (token->type == OP_CHARSET_RANGE, 0) && !accept_hyphen)
-    {
-      /* A '-' must only appear as anything but a range indicator before
-	 the closing bracket.  Everything else is an error.  */
-      re_token_t token2;
-      (void) peek_token_bracket (&token2, regexp, syntax);
-      if (token2.type != OP_CLOSE_BRACKET)
-	/* The actual error value is not standardized since this whole
-	   case is undefined.  But ERANGE makes good sense.  */
-	return REG_ERANGE;
-    }
-  elem->type = SB_CHAR;
-  elem->opr.ch = token->opr.c;
-  return REG_NOERROR;
-}
-
-/* Parse a bracket symbol in the bracket expression.  Bracket symbols are
-   such as [:<character_class>:], [.<collating_element>.], and
-   [=<equivalent_class>=].  */
-
-static reg_errcode_t
-parse_bracket_symbol (bracket_elem_t *elem, re_string_t *regexp,
-		      re_token_t *token)
-{
-  unsigned char ch, delim = token->opr.c;
-  int i = 0;
-  if (re_string_eoi(regexp))
-    return REG_EBRACK;
-  for (;; ++i)
-    {
-      if (i >= BRACKET_NAME_BUF_SIZE)
-	return REG_EBRACK;
-      if (token->type == OP_OPEN_CHAR_CLASS)
-	ch = re_string_fetch_byte_case (regexp);
-      else
-	ch = re_string_fetch_byte (regexp);
-      if (re_string_eoi(regexp))
-	return REG_EBRACK;
-      if (ch == delim && re_string_peek_byte (regexp, 0) == ']')
-	break;
-      elem->opr.name[i] = ch;
-    }
-  re_string_skip_bytes (regexp, 1);
-  elem->opr.name[i] = '\0';
-  switch (token->type)
-    {
-    case OP_OPEN_COLL_ELEM:
-      elem->type = COLL_SYM;
-      break;
-    case OP_OPEN_EQUIV_CLASS:
-      elem->type = EQUIV_CLASS;
-      break;
-    case OP_OPEN_CHAR_CLASS:
-      elem->type = CHAR_CLASS;
-      break;
-    default:
-      break;
-    }
-  return REG_NOERROR;
-}
-
-  /* Helper function for parse_bracket_exp.
-     Build the equivalence class which is represented by NAME.
-     The result are written to MBCSET and SBCSET.
-     EQUIV_CLASS_ALLOC is the allocated size of mbcset->equiv_classes,
-     is a pointer argument sinse we may update it.  */
-
-static reg_errcode_t
-#ifdef RE_ENABLE_I18N
-build_equiv_class (bitset_t sbcset, re_charset_t *mbcset,
-		   int *equiv_class_alloc, const unsigned char *name)
-#else /* not RE_ENABLE_I18N */
-build_equiv_class (bitset_t sbcset, const unsigned char *name)
-#endif /* not RE_ENABLE_I18N */
-{
-#ifdef _LIBC
-  uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
-  if (nrules != 0)
-    {
-      const int32_t *table, *indirect;
-      const unsigned char *weights, *extra, *cp;
-      unsigned char char_buf[2];
-      int32_t idx1, idx2;
-      unsigned int ch;
-      size_t len;
-      /* This #include defines a local function!  */
-# include <locale/weight.h>
-      /* Calculate the index for equivalence class.  */
-      cp = name;
-      table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
-      weights = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
-					       _NL_COLLATE_WEIGHTMB);
-      extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
-						   _NL_COLLATE_EXTRAMB);
-      indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE,
-						_NL_COLLATE_INDIRECTMB);
-      idx1 = findidx (&cp);
-      if (BE (idx1 == 0 || cp < name + strlen ((const char *) name), 0))
-	/* This isn't a valid character.  */
-	return REG_ECOLLATE;
-
-      /* Build single byte matcing table for this equivalence class.  */
-      char_buf[1] = (unsigned char) '\0';
-      len = weights[idx1 & 0xffffff];
-      for (ch = 0; ch < SBC_MAX; ++ch)
-	{
-	  char_buf[0] = ch;
-	  cp = char_buf;
-	  idx2 = findidx (&cp);
-/*
-	  idx2 = table[ch];
-*/
-	  if (idx2 == 0)
-	    /* This isn't a valid character.  */
-	    continue;
-	  /* Compare only if the length matches and the collation rule
-	     index is the same.  */
-	  if (len == weights[idx2 & 0xffffff] && (idx1 >> 24) == (idx2 >> 24))
-	    {
-	      int cnt = 0;
-
-	      while (cnt <= len &&
-		     weights[(idx1 & 0xffffff) + 1 + cnt]
-		     == weights[(idx2 & 0xffffff) + 1 + cnt])
-		++cnt;
-
-	      if (cnt > len)
-		bitset_set (sbcset, ch);
-	    }
-	}
-      /* Check whether the array has enough space.  */
-      if (BE (*equiv_class_alloc == mbcset->nequiv_classes, 0))
-	{
-	  /* Not enough, realloc it.  */
-	  /* +1 in case of mbcset->nequiv_classes is 0.  */
-	  int new_equiv_class_alloc = 2 * mbcset->nequiv_classes + 1;
-	  /* Use realloc since the array is NULL if *alloc == 0.  */
-	  int32_t *new_equiv_classes = re_realloc (mbcset->equiv_classes,
-						   int32_t,
-						   new_equiv_class_alloc);
-	  if (BE (new_equiv_classes == NULL, 0))
-	    return REG_ESPACE;
-	  mbcset->equiv_classes = new_equiv_classes;
-	  *equiv_class_alloc = new_equiv_class_alloc;
-	}
-      mbcset->equiv_classes[mbcset->nequiv_classes++] = idx1;
-    }
-  else
-#endif /* _LIBC */
-    {
-      if (BE (strlen ((const char *) name) != 1, 0))
-	return REG_ECOLLATE;
-      bitset_set (sbcset, *name);
-    }
-  return REG_NOERROR;
-}
-
-  /* Helper function for parse_bracket_exp.
-     Build the character class which is represented by NAME.
-     The result are written to MBCSET and SBCSET.
-     CHAR_CLASS_ALLOC is the allocated size of mbcset->char_classes,
-     is a pointer argument sinse we may update it.  */
-
-static reg_errcode_t
-#ifdef RE_ENABLE_I18N
-build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset,
-		 re_charset_t *mbcset, int *char_class_alloc,
-		 const unsigned char *class_name, reg_syntax_t syntax)
-#else /* not RE_ENABLE_I18N */
-build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset,
-		 const unsigned char *class_name, reg_syntax_t syntax)
-#endif /* not RE_ENABLE_I18N */
-{
-  int i;
-  const char *name = (const char *) class_name;
-
-  /* In case of REG_ICASE "upper" and "lower" match the both of
-     upper and lower cases.  */
-  if ((syntax & RE_ICASE)
-      && (strcmp (name, "upper") == 0 || strcmp (name, "lower") == 0))
-    name = "alpha";
-
-#ifdef RE_ENABLE_I18N
-  /* Check the space of the arrays.  */
-  if (BE (*char_class_alloc == mbcset->nchar_classes, 0))
-    {
-      /* Not enough, realloc it.  */
-      /* +1 in case of mbcset->nchar_classes is 0.  */
-      int new_char_class_alloc = 2 * mbcset->nchar_classes + 1;
-      /* Use realloc since array is NULL if *alloc == 0.  */
-      wctype_t *new_char_classes = re_realloc (mbcset->char_classes, wctype_t,
-					       new_char_class_alloc);
-      if (BE (new_char_classes == NULL, 0))
-	return REG_ESPACE;
-      mbcset->char_classes = new_char_classes;
-      *char_class_alloc = new_char_class_alloc;
-    }
-  mbcset->char_classes[mbcset->nchar_classes++] = __wctype (name);
-#endif /* RE_ENABLE_I18N */
-
-#define BUILD_CHARCLASS_LOOP(ctype_func)	\
-  do {						\
-    if (BE (trans != NULL, 0))			\
-      {						\
-	for (i = 0; i < SBC_MAX; ++i)		\
-  	  if (ctype_func (i))			\
-	    bitset_set (sbcset, trans[i]);	\
-      }						\
-    else					\
-      {						\
-	for (i = 0; i < SBC_MAX; ++i)		\
-  	  if (ctype_func (i))			\
-	    bitset_set (sbcset, i);		\
-      }						\
-  } while (0)
-
-  if (strcmp (name, "alnum") == 0)
-    BUILD_CHARCLASS_LOOP (isalnum);
-  else if (strcmp (name, "cntrl") == 0)
-    BUILD_CHARCLASS_LOOP (iscntrl);
-  else if (strcmp (name, "lower") == 0)
-    BUILD_CHARCLASS_LOOP (islower);
-  else if (strcmp (name, "space") == 0)
-    BUILD_CHARCLASS_LOOP (isspace);
-  else if (strcmp (name, "alpha") == 0)
-    BUILD_CHARCLASS_LOOP (isalpha);
-  else if (strcmp (name, "digit") == 0)
-    BUILD_CHARCLASS_LOOP (isdigit);
-  else if (strcmp (name, "print") == 0)
-    BUILD_CHARCLASS_LOOP (isprint);
-  else if (strcmp (name, "upper") == 0)
-    BUILD_CHARCLASS_LOOP (isupper);
-  else if (strcmp (name, "blank") == 0)
-    BUILD_CHARCLASS_LOOP (isblank);
-  else if (strcmp (name, "graph") == 0)
-    BUILD_CHARCLASS_LOOP (isgraph);
-  else if (strcmp (name, "punct") == 0)
-    BUILD_CHARCLASS_LOOP (ispunct);
-  else if (strcmp (name, "xdigit") == 0)
-    BUILD_CHARCLASS_LOOP (isxdigit);
-  else
-    return REG_ECTYPE;
-
-  return REG_NOERROR;
-}
-
-static bin_tree_t *
-build_charclass_op (re_dfa_t *dfa, RE_TRANSLATE_TYPE trans,
-		    const unsigned char *class_name,
-		    const unsigned char *extra, int non_match,
-		    reg_errcode_t *err)
-{
-  re_bitset_ptr_t sbcset;
-#ifdef RE_ENABLE_I18N
-  re_charset_t *mbcset;
-  int alloc = 0;
-#endif /* not RE_ENABLE_I18N */
-  reg_errcode_t ret;
-  re_token_t br_token;
-  bin_tree_t *tree;
-
-  sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1);
-#ifdef RE_ENABLE_I18N
-  mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1);
-#endif /* RE_ENABLE_I18N */
-
-#ifdef RE_ENABLE_I18N
-  if (BE (sbcset == NULL || mbcset == NULL, 0))
-#else /* not RE_ENABLE_I18N */
-  if (BE (sbcset == NULL, 0))
-#endif /* not RE_ENABLE_I18N */
-    {
-      *err = REG_ESPACE;
-      return NULL;
-    }
-
-  if (non_match)
-    {
-#ifdef RE_ENABLE_I18N
-      mbcset->non_match = 1;
-#endif /* not RE_ENABLE_I18N */
-    }
-
-  /* We don't care the syntax in this case.  */
-  ret = build_charclass (trans, sbcset,
-#ifdef RE_ENABLE_I18N
-			 mbcset, &alloc,
-#endif /* RE_ENABLE_I18N */
-			 class_name, 0);
-
-  if (BE (ret != REG_NOERROR, 0))
-    {
-      re_free (sbcset);
-#ifdef RE_ENABLE_I18N
-      free_charset (mbcset);
-#endif /* RE_ENABLE_I18N */
-      *err = ret;
-      return NULL;
-    }
-  /* \w match '_' also.  */
-  for (; *extra; extra++)
-    bitset_set (sbcset, *extra);
-
-  /* If it is non-matching list.  */
-  if (non_match)
-    bitset_not (sbcset);
-
-#ifdef RE_ENABLE_I18N
-  /* Ensure only single byte characters are set.  */
-  if (dfa->mb_cur_max > 1)
-    bitset_mask (sbcset, dfa->sb_char);
-#endif
-
-  /* Build a tree for simple bracket.  */
-  br_token.type = SIMPLE_BRACKET;
-  br_token.opr.sbcset = sbcset;
-  tree = create_token_tree (dfa, NULL, NULL, &br_token);
-  if (BE (tree == NULL, 0))
-    goto build_word_op_espace;
-
-#ifdef RE_ENABLE_I18N
-  if (dfa->mb_cur_max > 1)
-    {
-      bin_tree_t *mbc_tree;
-      /* Build a tree for complex bracket.  */
-      br_token.type = COMPLEX_BRACKET;
-      br_token.opr.mbcset = mbcset;
-      dfa->has_mb_node = 1;
-      mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token);
-      if (BE (mbc_tree == NULL, 0))
-	goto build_word_op_espace;
-      /* Then join them by ALT node.  */
-      tree = create_tree (dfa, tree, mbc_tree, OP_ALT);
-      if (BE (mbc_tree != NULL, 1))
-	return tree;
-    }
-  else
-    {
-      free_charset (mbcset);
-      return tree;
-    }
-#else /* not RE_ENABLE_I18N */
-  return tree;
-#endif /* not RE_ENABLE_I18N */
-
- build_word_op_espace:
-  re_free (sbcset);
-#ifdef RE_ENABLE_I18N
-  free_charset (mbcset);
-#endif /* RE_ENABLE_I18N */
-  *err = REG_ESPACE;
-  return NULL;
-}
-
-/* This is intended for the expressions like "a{1,3}".
-   Fetch a number from `input', and return the number.
-   Return -1, if the number field is empty like "{,1}".
-   Return -2, If an error is occured.  */
-
-static int
-fetch_number (re_string_t *input, re_token_t *token, reg_syntax_t syntax)
-{
-  int num = -1;
-  unsigned char c;
-  while (1)
-    {
-      fetch_token (token, input, syntax);
-      c = token->opr.c;
-      if (BE (token->type == END_OF_RE, 0))
-	return -2;
-      if (token->type == OP_CLOSE_DUP_NUM || c == ',')
-	break;
-      num = ((token->type != CHARACTER || c < '0' || '9' < c || num == -2)
-	     ? -2 : ((num == -1) ? c - '0' : num * 10 + c - '0'));
-      num = (num > RE_DUP_MAX) ? -2 : num;
-    }
-  return num;
-}
-
-#ifdef RE_ENABLE_I18N
-static void
-free_charset (re_charset_t *cset)
-{
-  re_free (cset->mbchars);
-# ifdef _LIBC
-  re_free (cset->coll_syms);
-  re_free (cset->equiv_classes);
-  re_free (cset->range_starts);
-  re_free (cset->range_ends);
-# endif
-  re_free (cset->char_classes);
-  re_free (cset);
-}
-#endif /* RE_ENABLE_I18N */
-
-/* Functions for binary tree operation.  */
-
-/* Create a tree node.  */
-
-static bin_tree_t *
-create_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right,
-	     re_token_type_t type)
-{
-  re_token_t t;
-  t.type = type;
-  return create_token_tree (dfa, left, right, &t);
-}
-
-static bin_tree_t *
-create_token_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right,
-		   const re_token_t *token)
-{
-  bin_tree_t *tree;
-  if (BE (dfa->str_tree_storage_idx == BIN_TREE_STORAGE_SIZE, 0))
-    {
-      bin_tree_storage_t *storage = re_malloc (bin_tree_storage_t, 1);
-
-      if (storage == NULL)
-	return NULL;
-      storage->next = dfa->str_tree_storage;
-      dfa->str_tree_storage = storage;
-      dfa->str_tree_storage_idx = 0;
-    }
-  tree = &dfa->str_tree_storage->data[dfa->str_tree_storage_idx++];
-
-  tree->parent = NULL;
-  tree->left = left;
-  tree->right = right;
-  tree->token = *token;
-  tree->token.duplicated = 0;
-  tree->token.opt_subexp = 0;
-  tree->first = NULL;
-  tree->next = NULL;
-  tree->node_idx = -1;
-
-  if (left != NULL)
-    left->parent = tree;
-  if (right != NULL)
-    right->parent = tree;
-  return tree;
-}
-
-/* Mark the tree SRC as an optional subexpression.
-   To be called from preorder or postorder.  */
-
-static reg_errcode_t
-mark_opt_subexp (void *extra, bin_tree_t *node)
-{
-  int idx = (int) (long) extra;
-  if (node->token.type == SUBEXP && node->token.opr.idx == idx)
-    node->token.opt_subexp = 1;
-
-  return REG_NOERROR;
-}
-
-/* Free the allocated memory inside NODE. */
-
-static void
-free_token (re_token_t *node)
-{
-#ifdef RE_ENABLE_I18N
-  if (node->type == COMPLEX_BRACKET && node->duplicated == 0)
-    free_charset (node->opr.mbcset);
-  else
-#endif /* RE_ENABLE_I18N */
-    if (node->type == SIMPLE_BRACKET && node->duplicated == 0)
-      re_free (node->opr.sbcset);
-}
-
-/* Worker function for tree walking.  Free the allocated memory inside NODE
-   and its children. */
-
-static reg_errcode_t
-free_tree (void *extra, bin_tree_t *node)
-{
-  free_token (&node->token);
-  return REG_NOERROR;
-}
-
-
-/* Duplicate the node SRC, and return new node.  This is a preorder
-   visit similar to the one implemented by the generic visitor, but
-   we need more infrastructure to maintain two parallel trees --- so,
-   it's easier to duplicate.  */
-
-static bin_tree_t *
-duplicate_tree (const bin_tree_t *root, re_dfa_t *dfa)
-{
-  const bin_tree_t *node;
-  bin_tree_t *dup_root;
-  bin_tree_t **p_new = &dup_root, *dup_node = root->parent;
-
-  for (node = root; ; )
-    {
-      /* Create a new tree and link it back to the current parent.  */
-      *p_new = create_token_tree (dfa, NULL, NULL, &node->token);
-      if (*p_new == NULL)
-	return NULL;
-      (*p_new)->parent = dup_node;
-      (*p_new)->token.duplicated = 1;
-      dup_node = *p_new;
-
-      /* Go to the left node, or up and to the right.  */
-      if (node->left)
-	{
-	  node = node->left;
-	  p_new = &dup_node->left;
-	}
-      else
-	{
-	  const bin_tree_t *prev = NULL;
-	  while (node->right == prev || node->right == NULL)
-	    {
-	      prev = node;
-	      node = node->parent;
-	      dup_node = dup_node->parent;
-	      if (!node)
-	        return dup_root;
-	    }
-	  node = node->right;
-	  p_new = &dup_node->right;
-	}
-    }
-}

Modified: trunk/src/utilfuns/regex.c
===================================================================
--- trunk/src/utilfuns/regex.c	2009-12-07 04:02:43 UTC (rev 2486)
+++ trunk/src/utilfuns/regex.c	2009-12-08 07:18:00 UTC (rev 2487)
@@ -1,74 +1,5721 @@
-/* Extended regular expression matching and search library.
-   Copyright (C) 2002, 2003, 2005 Free Software Foundation, Inc.
-   This file is part of the GNU C Library.
-   Contributed by Isamu Hasegawa <isamu at yamato.ibm.com>.
+/* Extended regular expression matching and search library,
+   version 0.12.
+   (Implements POSIX draft P1003.2/D11.2, except for some of the
+   internationalization features.)
 
-   The GNU C Library is free software; you can redistribute it and/or
-   modify it under the terms of the GNU Lesser General Public
-   License as published by the Free Software Foundation; either
-   version 2.1 of the License, or (at your option) any later version.
+   Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
 
-   The GNU C Library is distributed in the hope that it will be useful,
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-   Lesser General Public License for more details.
+   the C library, however.  The master source lives in /gd/gnu/lib.
 
-   You should have received a copy of the GNU Lesser General Public
-   License along with the GNU C Library; if not, write to the Free
-   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
-   02111-1307 USA.  */
+NOTE: The canonical source of this file is maintained with the 
+GNU C Library.  Bugs can be reported to bug-glibc at prep.ai.mit.edu.
 
+This program is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 2, or (at your option) any
+later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software Foundation, 
+Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
+
+/* AIX requires this to be the first thing in the file. */
+#if defined (_AIX) && !defined (REGEX_MALLOC)
+  #pragma alloca
+#endif
+
+#undef	_GNU_SOURCE
+#define _GNU_SOURCE
+
 #ifdef HAVE_CONFIG_H
-#include "config.h"
+#include <config.h>
 #endif
 
-/* Make sure noone compiles this code with a C++ compiler.  */
-#ifdef __cplusplus
-# error "This is C code, use a C compiler"
+#if defined(STDC_HEADERS) && !defined(emacs)
+#include <stddef.h>
+#else
+/* We need this for `regex.h', and perhaps for the Emacs include files.  */
+#include <sys/types.h>
 #endif
+#include <stdlib.h> // sword
 
-#ifdef _LIBC
-/* We have to keep the namespace clean.  */
-# define regfree(preg) __regfree (preg)
-# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
-# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
-# define regerror(errcode, preg, errbuf, errbuf_size) \
-	__regerror(errcode, preg, errbuf, errbuf_size)
-# define re_set_registers(bu, re, nu, st, en) \
-	__re_set_registers (bu, re, nu, st, en)
-# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
-	__re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
-# define re_match(bufp, string, size, pos, regs) \
-	__re_match (bufp, string, size, pos, regs)
-# define re_search(bufp, string, size, startpos, range, regs) \
-	__re_search (bufp, string, size, startpos, range, regs)
-# define re_compile_pattern(pattern, length, bufp) \
-	__re_compile_pattern (pattern, length, bufp)
-# define re_set_syntax(syntax) __re_set_syntax (syntax)
-# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
-	__re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
-# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
+/* For platform which support the ISO C amendement 1 functionality we
+   support user defined character classes.  */
+#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
+# include <wctype.h>
+# include <wchar.h>
+#endif
 
-# include "../locale/localeinfo.h"
+/* This is for other GNU distributions with internationalized messages.  */
+#if HAVE_LIBINTL_H || defined (_LIBC)
+# include <libintl.h>
+#else
+# define gettext(msgid) (msgid)
 #endif
 
-/* On some systems, limits.h sets RE_DUP_MAX to a lower value than
-   GNU regex allows.  Include it before <regex.h>, which correctly
-   #undefs RE_DUP_MAX and sets it to the right value.  */
-#include <limits.h>
+#ifndef gettext_noop
+/* This define is so xgettext can find the internationalizable
+   strings.  */
+#define gettext_noop(String) String
+#endif
 
-#include <regex.h>
-#include "regex_internal.h"
+/* The `emacs' switch turns on certain matching commands
+   that make sense only in Emacs. */
+#ifdef emacs
 
-#include "regex_internal.c"
-#include "regcomp.c"
-#include "regexec.c"
+#include "lisp.h"
+#include "buffer.h"
+#include "syntax.h"
 
-/* Binary backward compatibility.  */
-#if _LIBC
-# include <shlib-compat.h>
-# if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3)
-link_warning (re_max_failures, "the 're_max_failures' variable is obsolete and will go away.")
+#else  /* not emacs */
+
+/* If we are not linking with Emacs proper,
+   we can't use the relocating allocator
+   even if config.h says that we can.  */
+#undef REL_ALLOC
+
+#if defined (STDC_HEADERS) || defined (_LIBC)
+#include <stdlib.h>
+#else
+//sword char *malloc ();
+//sword char *realloc ();
+#endif
+
+/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
+   If nothing else has been done, use the method below.  */
+#ifdef INHIBIT_STRING_HEADER
+#if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
+#if !defined (bzero) && !defined (bcopy)
+#undef INHIBIT_STRING_HEADER
+#endif
+#endif
+#endif
+
+/* This is the normal way of making sure we have a bcopy and a bzero.
+   This is used in most programs--a few other programs avoid this
+	by defining INHIBIT_STRING_HEADER.  */
+#define HAVE_STRING_H	// for SWORD Project
+#ifndef INHIBIT_STRING_HEADER
+#if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
+#include <string.h>
+#ifndef bcmp
+#define bcmp(s1, s2, n)	memcmp ((s1), (s2), (n))
+#endif
+#ifndef bcopy
+#define bcopy(s, d, n)	memcpy ((d), (s), (n))
+#endif
+#ifndef bzero
+#define bzero(s, n)	memset ((s), 0, (n))
+#endif
+#else
+#include <strings.h>
+#endif
+#endif
+
+/* Define the syntax stuff for \<, \>, etc.  */
+
+/* This must be nonzero for the wordchar and notwordchar pattern
+   commands in re_match_2.  */
+#ifndef Sword
+#define Sword 1
+#endif
+
+#ifdef SWITCH_ENUM_BUG
+#define SWITCH_ENUM_CAST(x) ((int)(x))
+#else
+#define SWITCH_ENUM_CAST(x) (x)
+#endif
+
+#ifdef SYNTAX_TABLE
+
+extern char *re_syntax_table;
+
+#else /* not SYNTAX_TABLE */
+
+/* How many characters in the character set.  */
+#define CHAR_SET_SIZE 256
+
+static char re_syntax_table[CHAR_SET_SIZE];
+
+static void
+init_syntax_once ()
+{
+   register int c;
+   static int done = 0;
+
+   if (done)
+     return;
+
+   bzero (re_syntax_table, sizeof re_syntax_table);
+
+   for (c = 'a'; c <= 'z'; c++)
+     re_syntax_table[c] = Sword;
+
+   for (c = 'A'; c <= 'Z'; c++)
+     re_syntax_table[c] = Sword;
+
+   for (c = '0'; c <= '9'; c++)
+     re_syntax_table[c] = Sword;
+
+   re_syntax_table['_'] = Sword;
+
+   done = 1;
+}
+
+#endif /* not SYNTAX_TABLE */
+
+#define SYNTAX(c) re_syntax_table[c]
+
+#endif /* not emacs */
+
+/* Get the interface, including the syntax bits.  */
+#include "regex.h"
+
+/* isalpha etc. are used for the character classes.  */
+#include <ctype.h>
+
+/* Jim Meyering writes:
+
+   "... Some ctype macros are valid only for character codes that
+   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
+   using /bin/cc or gcc but without giving an ansi option).  So, all
+   ctype uses should be through macros like ISPRINT...  If
+   STDC_HEADERS is defined, then autoconf has verified that the ctype
+   macros don't need to be guarded with references to isascii. ...
+   Defining isascii to 1 should let any compiler worth its salt
+   eliminate the && through constant folding."  */
+
+#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
+#define ISASCII(c) 1
+#else
+#define ISASCII(c) isascii(c)
+#endif
+
+#ifdef isblank
+#define ISBLANK(c) (ISASCII (c) && isblank (c))
+#else
+#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
+#endif
+#ifdef isgraph
+#define ISGRAPH(c) (ISASCII (c) && isgraph (c))
+#else
+#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
+#endif
+
+#define ISPRINT(c) (ISASCII (c) && isprint (c))
+#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
+#define ISALNUM(c) (ISASCII (c) && isalnum (c))
+#define ISALPHA(c) (ISASCII (c) && isalpha (c))
+#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
+#define ISLOWER(c) (ISASCII (c) && islower (c))
+#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
+#define ISSPACE(c) (ISASCII (c) && isspace (c))
+#define ISUPPER(c) (ISASCII (c) && isupper (c))
+#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
+
+#ifndef NULL
+#define NULL (void *)0
+#endif
+
+/* We remove any previous definition of `SIGN_EXTEND_CHAR',
+   since ours (we hope) works properly with all combinations of
+   machines, compilers, `char' and `unsigned char' argument types.
+   (Per Bothner suggested the basic approach.)  */
+#undef SIGN_EXTEND_CHAR
+#if __STDC__
+#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
+#else  /* not __STDC__ */
+/* As in Harbison and Steele.  */
+#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
+#endif
+
+/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
+   use `alloca' instead of `malloc'.  This is because using malloc in
+   re_search* or re_match* could cause memory leaks when C-g is used in
+   Emacs; also, malloc is slower and causes storage fragmentation.  On
+   the other hand, malloc is more portable, and easier to debug.
+
+   Because we sometimes use alloca, some routines have to be macros,
+   not functions -- `alloca'-allocated space disappears at the end of the
+   function it is called in.  */
+
+#ifdef REGEX_MALLOC
+
+#define REGEX_ALLOCATE malloc
+#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
+#define REGEX_FREE free
+
+#else /* not REGEX_MALLOC  */
+
+/* Emacs already defines alloca, sometimes.  */
+#ifndef alloca
+
+/* Make alloca work the best possible way.  */
+#ifdef __GNUC__
+#define alloca __builtin_alloca
+#else /* not __GNUC__ */
+#if HAVE_ALLOCA_H
+#include <alloca.h>
+#else /* not __GNUC__ or HAVE_ALLOCA_H */
+#if 0 /* It is a bad idea to declare alloca.  We always cast the result.  */
+#ifndef _AIX /* Already did AIX, up at the top.  */
+char *alloca ();
+#endif /* not _AIX */
+#endif
+#endif /* not HAVE_ALLOCA_H */
+#endif /* not __GNUC__ */
+
+#endif /* not alloca */
+
+#define REGEX_ALLOCATE alloca
+
+/* Assumes a `char *destination' variable.  */
+#define REGEX_REALLOCATE(source, osize, nsize)				\
+  (destination = (char *) alloca (nsize),				\
+   bcopy (source, destination, osize),					\
+   destination)
+
+/* No need to do anything to free, after alloca.  */
+#define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
+
+#endif /* not REGEX_MALLOC */
+
+/* Define how to allocate the failure stack.  */
+
+#if defined (REL_ALLOC) && defined (REGEX_MALLOC)
+
+#define REGEX_ALLOCATE_STACK(size)				\
+  r_alloc (&failure_stack_ptr, (size))
+#define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
+  r_re_alloc (&failure_stack_ptr, (nsize))
+#define REGEX_FREE_STACK(ptr)					\
+  r_alloc_free (&failure_stack_ptr)
+
+#else /* not using relocating allocator */
+
+#ifdef REGEX_MALLOC
+
+#define REGEX_ALLOCATE_STACK malloc
+#define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
+#define REGEX_FREE_STACK free
+
+#else /* not REGEX_MALLOC */
+
+#define REGEX_ALLOCATE_STACK alloca
+
+#define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
+   REGEX_REALLOCATE (source, osize, nsize)
+/* No need to explicitly free anything.  */
+#define REGEX_FREE_STACK(arg)
+
+#endif /* not REGEX_MALLOC */
+#endif /* not using relocating allocator */
+
+
+/* True if `size1' is non-NULL and PTR is pointing anywhere inside
+   `string1' or just past its end.  This works if PTR is NULL, which is
+   a good thing.  */
+#define FIRST_STRING_P(ptr) 					\
+  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
+
+/* (Re)Allocate N items of type T using malloc, or fail.  */
+#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
+#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
+#define RETALLOC_IF(addr, n, t) \
+  if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
+#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
+
+#define BYTEWIDTH 8 /* In bits.  */
+
+#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
+
+#undef MAX
+#undef MIN
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+#define MIN(a, b) ((a) < (b) ? (a) : (b))
+
+typedef char boolean;
+#define false 0
+#define true 1
+
+static int re_match_2_internal ();
+
+/* These are the command codes that appear in compiled regular
+   expressions.  Some opcodes are followed by argument bytes.  A
+   command code can specify any interpretation whatsoever for its
+   arguments.  Zero bytes may appear in the compiled regular expression.  */
+
+typedef enum
+{
+  no_op = 0,
+
+  /* Succeed right away--no more backtracking.  */
+  succeed,
+
+        /* Followed by one byte giving n, then by n literal bytes.  */
+  exactn,
+
+        /* Matches any (more or less) character.  */
+  anychar,
+
+        /* Matches any one char belonging to specified set.  First
+           following byte is number of bitmap bytes.  Then come bytes
+           for a bitmap saying which chars are in.  Bits in each byte
+           are ordered low-bit-first.  A character is in the set if its
+           bit is 1.  A character too large to have a bit in the map is
+           automatically not in the set.  */
+  charset,
+
+        /* Same parameters as charset, but match any character that is
+           not one of those specified.  */
+  charset_not,
+
+        /* Start remembering the text that is matched, for storing in a
+           register.  Followed by one byte with the register number, in
+           the range 0 to one less than the pattern buffer's re_nsub
+           field.  Then followed by one byte with the number of groups
+           inner to this one.  (This last has to be part of the
+           start_memory only because we need it in the on_failure_jump
+           of re_match_2.)  */
+  start_memory,
+
+        /* Stop remembering the text that is matched and store it in a
+           memory register.  Followed by one byte with the register
+           number, in the range 0 to one less than `re_nsub' in the
+           pattern buffer, and one byte with the number of inner groups,
+           just like `start_memory'.  (We need the number of inner
+           groups here because we don't have any easy way of finding the
+           corresponding start_memory when we're at a stop_memory.)  */
+  stop_memory,
+
+        /* Match a duplicate of something remembered. Followed by one
+           byte containing the register number.  */
+  duplicate,
+
+        /* Fail unless at beginning of line.  */
+  begline,
+
+        /* Fail unless at end of line.  */
+  endline,
+
+        /* Succeeds if at beginning of buffer (if emacs) or at beginning
+           of string to be matched (if not).  */
+  begbuf,
+
+        /* Analogously, for end of buffer/string.  */
+  endbuf,
+
+        /* Followed by two byte relative address to which to jump.  */
+  jump,
+
+	/* Same as jump, but marks the end of an alternative.  */
+  jump_past_alt,
+
+        /* Followed by two-byte relative address of place to resume at
+           in case of failure.  */
+  on_failure_jump,
+
+        /* Like on_failure_jump, but pushes a placeholder instead of the
+           current string position when executed.  */
+  on_failure_keep_string_jump,
+
+        /* Throw away latest failure point and then jump to following
+           two-byte relative address.  */
+  pop_failure_jump,
+
+        /* Change to pop_failure_jump if know won't have to backtrack to
+           match; otherwise change to jump.  This is used to jump
+           back to the beginning of a repeat.  If what follows this jump
+           clearly won't match what the repeat does, such that we can be
+           sure that there is no use backtracking out of repetitions
+           already matched, then we change it to a pop_failure_jump.
+           Followed by two-byte address.  */
+  maybe_pop_jump,
+
+        /* Jump to following two-byte address, and push a dummy failure
+           point. This failure point will be thrown away if an attempt
+           is made to use it for a failure.  A `+' construct makes this
+           before the first repeat.  Also used as an intermediary kind
+           of jump when compiling an alternative.  */
+  dummy_failure_jump,
+
+	/* Push a dummy failure point and continue.  Used at the end of
+	   alternatives.  */
+  push_dummy_failure,
+
+        /* Followed by two-byte relative address and two-byte number n.
+           After matching N times, jump to the address upon failure.  */
+  succeed_n,
+
+        /* Followed by two-byte relative address, and two-byte number n.
+           Jump to the address N times, then fail.  */
+  jump_n,
+
+        /* Set the following two-byte relative address to the
+           subsequent two-byte number.  The address *includes* the two
+           bytes of number.  */
+  set_number_at,
+
+  wordchar,	/* Matches any word-constituent character.  */
+  notwordchar,	/* Matches any char that is not a word-constituent.  */
+
+  wordbeg,	/* Succeeds if at word beginning.  */
+  wordend,	/* Succeeds if at word end.  */
+
+  wordbound,	/* Succeeds if at a word boundary.  */
+  notwordbound	/* Succeeds if not at a word boundary.  */
+
+#ifdef emacs
+  ,before_dot,	/* Succeeds if before point.  */
+  at_dot,	/* Succeeds if at point.  */
+  after_dot,	/* Succeeds if after point.  */
+
+	/* Matches any character whose syntax is specified.  Followed by
+           a byte which contains a syntax code, e.g., Sword.  */
+  syntaxspec,
+
+	/* Matches any character whose syntax is not that specified.  */
+  notsyntaxspec
+#endif /* emacs */
+} re_opcode_t;
+
+/* Common operations on the compiled pattern.  */
+
+/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
+
+#define STORE_NUMBER(destination, number)				\
+  do {									\
+    (destination)[0] = (number) & 0377;					\
+    (destination)[1] = (number) >> 8;					\
+  } while (0)
+
+/* Same as STORE_NUMBER, except increment DESTINATION to
+   the byte after where the number is stored.  Therefore, DESTINATION
+   must be an lvalue.  */
+
+#define STORE_NUMBER_AND_INCR(destination, number)			\
+  do {									\
+    STORE_NUMBER (destination, number);					\
+    (destination) += 2;							\
+  } while (0)
+
+/* Put into DESTINATION a number stored in two contiguous bytes starting
+   at SOURCE.  */
+
+#define EXTRACT_NUMBER(destination, source)				\
+  do {									\
+    (destination) = *(source) & 0377;					\
+    (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
+  } while (0)
+
+#ifdef DEBUG
+static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
+static void
+extract_number (dest, source)
+    int *dest;
+    unsigned char *source;
+{
+  int temp = SIGN_EXTEND_CHAR (*(source + 1));
+  *dest = *source & 0377;
+  *dest += temp << 8;
+}
+
+#ifndef EXTRACT_MACROS /* To debug the macros.  */
+#undef EXTRACT_NUMBER
+#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
+#endif /* not EXTRACT_MACROS */
+
+#endif /* DEBUG */
+
+/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
+   SOURCE must be an lvalue.  */
+
+#define EXTRACT_NUMBER_AND_INCR(destination, source)			\
+  do {									\
+    EXTRACT_NUMBER (destination, source);				\
+    (source) += 2; 							\
+  } while (0)
+
+#ifdef DEBUG
+static void extract_number_and_incr _RE_ARGS ((int *destination,
+					       unsigned char **source));
+static void
+extract_number_and_incr (destination, source)
+    int *destination;
+    unsigned char **source;
+{
+  extract_number (destination, *source);
+  *source += 2;
+}
+
+#ifndef EXTRACT_MACROS
+#undef EXTRACT_NUMBER_AND_INCR
+#define EXTRACT_NUMBER_AND_INCR(dest, src) \
+  extract_number_and_incr (&dest, &src)
+#endif /* not EXTRACT_MACROS */
+
+#endif /* DEBUG */
+
+/* If DEBUG is defined, Regex prints many voluminous messages about what
+   it is doing (if the variable `debug' is nonzero).  If linked with the
+   main program in `iregex.c', you can enter patterns and strings
+   interactively.  And if linked with the main program in `main.c' and
+   the other test files, you can run the already-written tests.  */
+
+#ifdef DEBUG
+
+/* We use standard I/O for debugging.  */
+#include <stdio.h>
+
+/* It is useful to test things that ``must'' be true when debugging.  */
+#include <assert.h>
+
+static int debug = 0;
+
+#define DEBUG_STATEMENT(e) e
+#define DEBUG_PRINT1(x) if (debug) printf (x)
+#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
+#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
+#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
+#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 				\
+  if (debug) print_partial_compiled_pattern (s, e)
+#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)			\
+  if (debug) print_double_string (w, s1, sz1, s2, sz2)
+
+
+/* Print the fastmap in human-readable form.  */
+
+void
+print_fastmap (fastmap)
+    char *fastmap;
+{
+  unsigned was_a_range = 0;
+  unsigned i = 0;
+
+  while (i < (1 << BYTEWIDTH))
+    {
+      if (fastmap[i++])
+	{
+	  was_a_range = 0;
+          putchar (i - 1);
+          while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
+            {
+              was_a_range = 1;
+              i++;
+            }
+	  if (was_a_range)
+            {
+              printf ("-");
+              putchar (i - 1);
+            }
+        }
+    }
+  putchar ('\n');
+}
+
+
+/* Print a compiled pattern string in human-readable form, starting at
+   the START pointer into it and ending just before the pointer END.  */
+
+void
+print_partial_compiled_pattern (start, end)
+    unsigned char *start;
+    unsigned char *end;
+{
+  int mcnt, mcnt2;
+  unsigned char *p1;
+  unsigned char *p = start;
+  unsigned char *pend = end;
+
+  if (start == NULL)
+    {
+      printf ("(null)\n");
+      return;
+    }
+
+  /* Loop over pattern commands.  */
+  while (p < pend)
+    {
+      printf ("%d:\t", p - start);
+
+      switch ((re_opcode_t) *p++)
+	{
+        case no_op:
+          printf ("/no_op");
+          break;
+
+	case exactn:
+	  mcnt = *p++;
+          printf ("/exactn/%d", mcnt);
+          do
+	    {
+              putchar ('/');
+	      putchar (*p++);
+            }
+          while (--mcnt);
+          break;
+
+	case start_memory:
+          mcnt = *p++;
+          printf ("/start_memory/%d/%d", mcnt, *p++);
+          break;
+
+	case stop_memory:
+          mcnt = *p++;
+	  printf ("/stop_memory/%d/%d", mcnt, *p++);
+          break;
+
+	case duplicate:
+	  printf ("/duplicate/%d", *p++);
+	  break;
+
+	case anychar:
+	  printf ("/anychar");
+	  break;
+
+	case charset:
+        case charset_not:
+          {
+            register int c, last = -100;
+	    register int in_range = 0;
+
+	    printf ("/charset [%s",
+	            (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
+
+            assert (p + *p < pend);
+
+            for (c = 0; c < 256; c++)
+	      if (c / 8 < *p
+		  && (p[1 + (c/8)] & (1 << (c % 8))))
+		{
+		  /* Are we starting a range?  */
+		  if (last + 1 == c && ! in_range)
+		    {
+		      putchar ('-');
+		      in_range = 1;
+		    }
+		  /* Have we broken a range?  */
+		  else if (last + 1 != c && in_range)
+              {
+		      putchar (last);
+		      in_range = 0;
+		    }
+
+		  if (! in_range)
+		    putchar (c);
+
+		  last = c;
+              }
+
+	    if (in_range)
+	      putchar (last);
+
+	    putchar (']');
+
+	    p += 1 + *p;
+	  }
+	  break;
+
+	case begline:
+	  printf ("/begline");
+          break;
+
+	case endline:
+          printf ("/endline");
+          break;
+
+	case on_failure_jump:
+          extract_number_and_incr (&mcnt, &p);
+  	  printf ("/on_failure_jump to %d", p + mcnt - start);
+          break;
+
+	case on_failure_keep_string_jump:
+          extract_number_and_incr (&mcnt, &p);
+  	  printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
+          break;
+
+	case dummy_failure_jump:
+          extract_number_and_incr (&mcnt, &p);
+  	  printf ("/dummy_failure_jump to %d", p + mcnt - start);
+          break;
+
+	case push_dummy_failure:
+          printf ("/push_dummy_failure");
+          break;
+
+        case maybe_pop_jump:
+          extract_number_and_incr (&mcnt, &p);
+  	  printf ("/maybe_pop_jump to %d", p + mcnt - start);
+	  break;
+
+        case pop_failure_jump:
+	  extract_number_and_incr (&mcnt, &p);
+  	  printf ("/pop_failure_jump to %d", p + mcnt - start);
+	  break;
+
+        case jump_past_alt:
+	  extract_number_and_incr (&mcnt, &p);
+  	  printf ("/jump_past_alt to %d", p + mcnt - start);
+	  break;
+
+        case jump:
+	  extract_number_and_incr (&mcnt, &p);
+  	  printf ("/jump to %d", p + mcnt - start);
+	  break;
+
+        case succeed_n:
+          extract_number_and_incr (&mcnt, &p);
+	  p1 = p + mcnt;
+          extract_number_and_incr (&mcnt2, &p);
+	  printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
+          break;
+
+        case jump_n:
+          extract_number_and_incr (&mcnt, &p);
+	  p1 = p + mcnt;
+          extract_number_and_incr (&mcnt2, &p);
+	  printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
+          break;
+
+        case set_number_at:
+          extract_number_and_incr (&mcnt, &p);
+	  p1 = p + mcnt;
+          extract_number_and_incr (&mcnt2, &p);
+	  printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
+          break;
+
+        case wordbound:
+	  printf ("/wordbound");
+	  break;
+
+	case notwordbound:
+	  printf ("/notwordbound");
+          break;
+
+	case wordbeg:
+	  printf ("/wordbeg");
+	  break;
+
+	case wordend:
+	  printf ("/wordend");
+
+#ifdef emacs
+	case before_dot:
+	  printf ("/before_dot");
+          break;
+
+	case at_dot:
+	  printf ("/at_dot");
+          break;
+
+	case after_dot:
+	  printf ("/after_dot");
+          break;
+
+	case syntaxspec:
+          printf ("/syntaxspec");
+	  mcnt = *p++;
+	  printf ("/%d", mcnt);
+          break;
+
+	case notsyntaxspec:
+          printf ("/notsyntaxspec");
+	  mcnt = *p++;
+	  printf ("/%d", mcnt);
+	  break;
+#endif /* emacs */
+
+	case wordchar:
+	  printf ("/wordchar");
+          break;
+
+	case notwordchar:
+	  printf ("/notwordchar");
+          break;
+
+	case begbuf:
+	  printf ("/begbuf");
+          break;
+
+	case endbuf:
+	  printf ("/endbuf");
+          break;
+
+        default:
+          printf ("?%d", *(p-1));
+	}
+
+      putchar ('\n');
+    }
+
+  printf ("%d:\tend of pattern.\n", p - start);
+}
+
+
+void
+print_compiled_pattern (bufp)
+    struct re_pattern_buffer *bufp;
+{
+  unsigned char *buffer = bufp->buffer;
+
+  print_partial_compiled_pattern (buffer, buffer + bufp->used);
+  printf ("%ld bytes used/%ld bytes allocated.\n",
+	  bufp->used, bufp->allocated);
+
+  if (bufp->fastmap_accurate && bufp->fastmap)
+    {
+      printf ("fastmap: ");
+      print_fastmap (bufp->fastmap);
+    }
+
+  printf ("re_nsub: %d\t", bufp->re_nsub);
+  printf ("regs_alloc: %d\t", bufp->regs_allocated);
+  printf ("can_be_null: %d\t", bufp->can_be_null);
+  printf ("newline_anchor: %d\n", bufp->newline_anchor);
+  printf ("no_sub: %d\t", bufp->no_sub);
+  printf ("not_bol: %d\t", bufp->not_bol);
+  printf ("not_eol: %d\t", bufp->not_eol);
+  printf ("syntax: %lx\n", bufp->syntax);
+  /* Perhaps we should print the translate table?  */
+}
+
+
+void
+print_double_string (where, string1, size1, string2, size2)
+    const char *where;
+    const char *string1;
+    const char *string2;
+    int size1;
+    int size2;
+{
+  int this_char;
+
+  if (where == NULL)
+    printf ("(null)");
+  else
+    {
+      if (FIRST_STRING_P (where))
+        {
+          for (this_char = where - string1; this_char < size1; this_char++)
+            putchar (string1[this_char]);
+
+          where = string2;
+        }
+
+      for (this_char = where - string2; this_char < size2; this_char++)
+        putchar (string2[this_char]);
+    }
+}
+
+void
+printchar (c)
+     int c;
+{
+  putc (c, stderr);
+}
+
+#else /* not DEBUG */
+
+#undef assert
+#define assert(e)
+
+#define DEBUG_STATEMENT(e)
+#define DEBUG_PRINT1(x)
+#define DEBUG_PRINT2(x1, x2)
+#define DEBUG_PRINT3(x1, x2, x3)
+#define DEBUG_PRINT4(x1, x2, x3, x4)
+#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
+#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
+
+#endif /* not DEBUG */
+
+/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
+   also be assigned to arbitrarily: each pattern buffer stores its own
+   syntax, so it can be changed between regex compilations.  */
+/* This has no initializer because initialized variables in Emacs
+   become read-only after dumping.  */
+reg_syntax_t re_syntax_options;
+
+
+/* Specify the precise syntax of regexps for compilation.  This provides
+   for compatibility for various utilities which historically have
+   different, incompatible syntaxes.
+
+   The argument SYNTAX is a bit mask comprised of the various bits
+   defined in regex.h.  We return the old syntax.  */
+
+reg_syntax_t
+re_set_syntax (syntax)
+    reg_syntax_t syntax;
+{
+  reg_syntax_t ret = re_syntax_options;
+
+  re_syntax_options = syntax;
+#ifdef DEBUG
+  if (syntax & RE_DEBUG)
+    debug = 1;
+  else if (debug) /* was on but now is not */
+    debug = 0;
+#endif /* DEBUG */
+  return ret;
+}
+
+/* This table gives an error message for each of the error codes listed
+   in regex.h.  Obviously the order here has to be same as there.
+   POSIX doesn't require that we do anything for REG_NOERROR,
+   but why not be nice?  */
+
+static const char *re_error_msgid[] =
+  {
+    gettext_noop ("Success"),	/* REG_NOERROR */
+    gettext_noop ("No match"),	/* REG_NOMATCH */
+    gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
+    gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
+    gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
+    gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
+    gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
+    gettext_noop ("Unmatched [ or [^"),	/* REG_EBRACK */
+    gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
+    gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
+    gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
+    gettext_noop ("Invalid range end"),	/* REG_ERANGE */
+    gettext_noop ("Memory exhausted"), /* REG_ESPACE */
+    gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
+    gettext_noop ("Premature end of regular expression"), /* REG_EEND */
+    gettext_noop ("Regular expression too big"), /* REG_ESIZE */
+    gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
+  };
+
+/* Avoiding alloca during matching, to placate r_alloc.  */
+
+/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
+   searching and matching functions should not call alloca.  On some
+   systems, alloca is implemented in terms of malloc, and if we're
+   using the relocating allocator routines, then malloc could cause a
+   relocation, which might (if the strings being searched are in the
+   ralloc heap) shift the data out from underneath the regexp
+   routines.
+
+   Here's another reason to avoid allocation: Emacs
+   processes input from X in a signal handler; processing X input may
+   call malloc; if input arrives while a matching routine is calling
+   malloc, then we're scrod.  But Emacs can't just block input while
+   calling matching routines; then we don't notice interrupts when
+   they come in.  So, Emacs blocks input around all regexp calls
+   except the matching calls, which it leaves unprotected, in the
+   faith that they will not malloc.  */
+
+/* Normally, this is fine.  */
+#define MATCH_MAY_ALLOCATE
+
+/* When using GNU C, we are not REALLY using the C alloca, no matter
+   what config.h may say.  So don't take precautions for it.  */
+#ifdef __GNUC__
+#undef C_ALLOCA
+#endif
+
+/* The match routines may not allocate if (1) they would do it with malloc
+   and (2) it's not safe for them to use malloc.
+   Note that if REL_ALLOC is defined, matching would not use malloc for the
+   failure stack, but we would still use it for the register vectors;
+   so REL_ALLOC should not affect this.  */
+#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
+#undef MATCH_MAY_ALLOCATE
+#endif
+
+
+/* Failure stack declarations and macros; both re_compile_fastmap and
+   re_match_2 use a failure stack.  These have to be macros because of
+   REGEX_ALLOCATE_STACK.  */
+
+
+/* Number of failure points for which to initially allocate space
+   when matching.  If this number is exceeded, we allocate more
+   space, so it is not a hard limit.  */
+#ifndef INIT_FAILURE_ALLOC
+#define INIT_FAILURE_ALLOC 5
+#endif
+
+/* Roughly the maximum number of failure points on the stack.  Would be
+   exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
+   This is a variable only so users of regex can assign to it; we never
+   change it ourselves.  */
+
+#ifdef INT_IS_16BIT
+
+#if defined (MATCH_MAY_ALLOCATE)
+/* 4400 was enough to cause a crash on Alpha OSF/1,
+   whose default stack limit is 2mb.  */
+long int re_max_failures = 4000;
+#else
+long int re_max_failures = 2000;
+#endif
+
+union fail_stack_elt
+{
+  unsigned char *pointer;
+  long int integer;
+};
+
+typedef union fail_stack_elt fail_stack_elt_t;
+
+typedef struct
+{
+  fail_stack_elt_t *stack;
+  unsigned long int size;
+  unsigned long int avail;		/* Offset of next open position.  */
+} fail_stack_type;
+
+#else /* not INT_IS_16BIT */
+
+#if defined (MATCH_MAY_ALLOCATE)
+/* 4400 was enough to cause a crash on Alpha OSF/1,
+   whose default stack limit is 2mb.  */
+int re_max_failures = 20000;
+#else
 int re_max_failures = 2000;
+#endif
+
+union fail_stack_elt
+{
+  unsigned char *pointer;
+  int integer;
+};
+
+typedef union fail_stack_elt fail_stack_elt_t;
+
+typedef struct
+{
+  fail_stack_elt_t *stack;
+  unsigned size;
+  unsigned avail;			/* Offset of next open position.  */
+} fail_stack_type;
+
+#endif /* INT_IS_16BIT */
+
+#define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
+#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
+#define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
+
+
+/* Define macros to initialize and free the failure stack.
+   Do `return -2' if the alloc fails.  */
+
+#ifdef MATCH_MAY_ALLOCATE
+#define INIT_FAIL_STACK()						\
+  do {									\
+    fail_stack.stack = (fail_stack_elt_t *)				\
+      REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t));	\
+									\
+    if (fail_stack.stack == NULL)					\
+      return -2;							\
+									\
+    fail_stack.size = INIT_FAILURE_ALLOC;				\
+    fail_stack.avail = 0;						\
+  } while (0)
+
+#define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
+#else
+#define INIT_FAIL_STACK()						\
+  do {									\
+    fail_stack.avail = 0;						\
+  } while (0)
+
+#define RESET_FAIL_STACK()
+#endif
+
+
+/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
+
+   Return 1 if succeeds, and 0 if either ran out of memory
+   allocating space for it or it was already too large.
+
+   REGEX_REALLOCATE_STACK requires `destination' be declared.   */
+
+#define DOUBLE_FAIL_STACK(fail_stack)					\
+  ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS)	\
+   ? 0									\
+   : ((fail_stack).stack = (fail_stack_elt_t *)				\
+        REGEX_REALLOCATE_STACK ((fail_stack).stack, 			\
+          (fail_stack).size * sizeof (fail_stack_elt_t),		\
+          ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),	\
+									\
+      (fail_stack).stack == NULL					\
+      ? 0								\
+      : ((fail_stack).size <<= 1, 					\
+         1)))
+
+
+/* Push pointer POINTER on FAIL_STACK.
+   Return 1 if was able to do so and 0 if ran out of memory allocating
+   space to do so.  */
+#define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
+  ((FAIL_STACK_FULL ()							\
+    && !DOUBLE_FAIL_STACK (FAIL_STACK))					\
+   ? 0									\
+   : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
+      1))
+
+/* Push a pointer value onto the failure stack.
+   Assumes the variable `fail_stack'.  Probably should only
+   be called from within `PUSH_FAILURE_POINT'.  */
+#define PUSH_FAILURE_POINTER(item)					\
+  fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
+
+/* This pushes an integer-valued item onto the failure stack.
+   Assumes the variable `fail_stack'.  Probably should only
+   be called from within `PUSH_FAILURE_POINT'.  */
+#define PUSH_FAILURE_INT(item)					\
+  fail_stack.stack[fail_stack.avail++].integer = (item)
+
+/* Push a fail_stack_elt_t value onto the failure stack.
+   Assumes the variable `fail_stack'.  Probably should only
+   be called from within `PUSH_FAILURE_POINT'.  */
+#define PUSH_FAILURE_ELT(item)					\
+  fail_stack.stack[fail_stack.avail++] =  (item)
+
+/* These three POP... operations complement the three PUSH... operations.
+   All assume that `fail_stack' is nonempty.  */
+#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
+#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
+#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
+
+/* Used to omit pushing failure point id's when we're not debugging.  */
+#ifdef DEBUG
+#define DEBUG_PUSH PUSH_FAILURE_INT
+#define DEBUG_POP(item_addr) (item_addr)->integer = POP_FAILURE_INT ()
+#else
+#define DEBUG_PUSH(item)
+#define DEBUG_POP(item_addr)
+#endif
+
+
+/* Push the information about the state we will need
+   if we ever fail back to it.
+
+   Requires variables fail_stack, regstart, regend, reg_info, and
+   num_regs be declared.  DOUBLE_FAIL_STACK requires `destination' be
+   declared.
+
+   Does `return FAILURE_CODE' if runs out of memory.  */
+
+#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
+  do {									\
+    char *destination;							\
+    /* Must be int, so when we don't save any registers, the arithmetic	\
+       of 0 + -1 isn't done as unsigned.  */				\
+    /* Can't be int, since there is not a shred of a guarantee that int	\
+       is wide enough to hold a value of something to which pointer can	\
+       be assigned */							\
+    s_reg_t this_reg;							\
+    									\
+    DEBUG_STATEMENT (failure_id++);					\
+    DEBUG_STATEMENT (nfailure_points_pushed++);				\
+    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
+    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
+    DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
+									\
+    DEBUG_PRINT2 ("  slots needed: %d\n", NUM_FAILURE_ITEMS);		\
+    DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
+									\
+    /* Ensure we have enough space allocated for what we will push.  */	\
+    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
+      {									\
+        if (!DOUBLE_FAIL_STACK (fail_stack))				\
+          return failure_code;						\
+									\
+        DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
+		       (fail_stack).size);				\
+        DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
+      }									\
+									\
+    /* Push the info, starting with the registers.  */			\
+    DEBUG_PRINT1 ("\n");						\
+									\
+    if (1)								\
+      for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
+	   this_reg++)							\
+	{								\
+	  DEBUG_PRINT2 ("  Pushing reg: %d\n", this_reg);		\
+	  DEBUG_STATEMENT (num_regs_pushed++);				\
+									\
+	  DEBUG_PRINT2 ("    start: 0x%x\n", regstart[this_reg]);	\
+	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
+									\
+	  DEBUG_PRINT2 ("    end: 0x%x\n", regend[this_reg]);		\
+	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
+									\
+	  DEBUG_PRINT2 ("    info: 0x%x\n      ", reg_info[this_reg]);	\
+	  DEBUG_PRINT2 (" match_null=%d",				\
+			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
+	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
+	  DEBUG_PRINT2 (" matched_something=%d",			\
+			MATCHED_SOMETHING (reg_info[this_reg]));	\
+	  DEBUG_PRINT2 (" ever_matched=%d",				\
+			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
+	  DEBUG_PRINT1 ("\n");						\
+	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
+	}								\
+									\
+    DEBUG_PRINT2 ("  Pushing  low active reg: %d\n", lowest_active_reg);\
+    PUSH_FAILURE_INT (lowest_active_reg);				\
+									\
+    DEBUG_PRINT2 ("  Pushing high active reg: %d\n", highest_active_reg);\
+    PUSH_FAILURE_INT (highest_active_reg);				\
+									\
+    DEBUG_PRINT2 ("  Pushing pattern 0x%x:\n", pattern_place);		\
+    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
+    PUSH_FAILURE_POINTER (pattern_place);				\
+									\
+    DEBUG_PRINT2 ("  Pushing string 0x%x: `", string_place);		\
+    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
+				 size2);				\
+    DEBUG_PRINT1 ("'\n");						\
+    PUSH_FAILURE_POINTER (string_place);				\
+									\
+    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
+    DEBUG_PUSH (failure_id);						\
+  } while (0)
+
+/* This is the number of items that are pushed and popped on the stack
+   for each register.  */
+#define NUM_REG_ITEMS  3
+
+/* Individual items aside from the registers.  */
+#ifdef DEBUG
+#define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
+#else
+#define NUM_NONREG_ITEMS 4
+#endif
+
+/* We push at most this many items on the stack.  */
+/* We used to use (num_regs - 1), which is the number of registers
+   this regexp will save; but that was changed to 5
+   to avoid stack overflow for a regexp with lots of parens.  */
+#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
+
+/* We actually push this many items.  */
+#define NUM_FAILURE_ITEMS				\
+  (((0							\
+     ? 0 : highest_active_reg - lowest_active_reg + 1)	\
+    * NUM_REG_ITEMS)					\
+   + NUM_NONREG_ITEMS)
+
+/* How many items can still be added to the stack without overflowing it.  */
+#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
+
+
+/* Pops what PUSH_FAIL_STACK pushes.
+
+   We restore into the parameters, all of which should be lvalues:
+     STR -- the saved data position.
+     PAT -- the saved pattern position.
+     LOW_REG, HIGH_REG -- the highest and lowest active registers.
+     REGSTART, REGEND -- arrays of string positions.
+     REG_INFO -- array of information about each subexpression.
+
+   Also assumes the variables `fail_stack' and (if debugging), `bufp',
+   `pend', `string1', `size1', `string2', and `size2'.  */
+
+#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
+{									\
+  DEBUG_STATEMENT (fail_stack_elt_t failure_id;)			\
+  s_reg_t this_reg;							\
+  const unsigned char *string_temp;					\
+									\
+  assert (!FAIL_STACK_EMPTY ());					\
+									\
+  /* Remove failure points and point to how many regs pushed.  */	\
+  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
+  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
+  DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
+									\
+  assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
+									\
+  DEBUG_POP (&failure_id);						\
+  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
+									\
+  /* If the saved string location is NULL, it came from an		\
+     on_failure_keep_string_jump opcode, and we want to throw away the	\
+     saved NULL, thus retaining our current position in the string.  */	\
+  string_temp = POP_FAILURE_POINTER ();					\
+  if (string_temp != NULL)						\
+    str = (const char *) string_temp;					\
+									\
+  DEBUG_PRINT2 ("  Popping string 0x%x: `", str);			\
+  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
+  DEBUG_PRINT1 ("'\n");							\
+									\
+  pat = (unsigned char *) POP_FAILURE_POINTER ();			\
+  DEBUG_PRINT2 ("  Popping pattern 0x%x:\n", pat);			\
+  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
+									\
+  /* Restore register info.  */						\
+  high_reg = (active_reg_t) POP_FAILURE_INT ();				\
+  DEBUG_PRINT2 ("  Popping high active reg: %d\n", high_reg);		\
+									\
+  low_reg = (active_reg_t) POP_FAILURE_INT ();				\
+  DEBUG_PRINT2 ("  Popping  low active reg: %d\n", low_reg);		\
+									\
+  if (1)								\
+    for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
+      {									\
+	DEBUG_PRINT2 ("    Popping reg: %d\n", this_reg);		\
+									\
+	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
+	DEBUG_PRINT2 ("      info: 0x%x\n", reg_info[this_reg]);	\
+									\
+	regend[this_reg] = (const char *) POP_FAILURE_POINTER ();	\
+	DEBUG_PRINT2 ("      end: 0x%x\n", regend[this_reg]);		\
+									\
+	regstart[this_reg] = (const char *) POP_FAILURE_POINTER ();	\
+	DEBUG_PRINT2 ("      start: 0x%x\n", regstart[this_reg]);	\
+      }									\
+  else									\
+    {									\
+      for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
+	{								\
+	  reg_info[this_reg].word.integer = 0;				\
+	  regend[this_reg] = 0;						\
+	  regstart[this_reg] = 0;					\
+	}								\
+      highest_active_reg = high_reg;					\
+    }									\
+									\
+  set_regs_matched_done = 0;						\
+  DEBUG_STATEMENT (nfailure_points_popped++);				\
+} /* POP_FAILURE_POINT */
+
+
+
+/* Structure for per-register (a.k.a. per-group) information.
+   Other register information, such as the
+   starting and ending positions (which are addresses), and the list of
+   inner groups (which is a bits list) are maintained in separate
+   variables.
+
+   We are making a (strictly speaking) nonportable assumption here: that
+   the compiler will pack our bit fields into something that fits into
+   the type of `word', i.e., is something that fits into one item on the
+   failure stack.  */
+
+
+/* Declarations and macros for re_match_2.  */
+
+typedef union
+{
+  fail_stack_elt_t word;
+  struct
+  {
+      /* This field is one if this group can match the empty string,
+         zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
+#define MATCH_NULL_UNSET_VALUE 3
+    unsigned match_null_string_p : 2;
+    unsigned is_active : 1;
+    unsigned matched_something : 1;
+    unsigned ever_matched_something : 1;
+  } bits;
+} register_info_type;
+
+#define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
+#define IS_ACTIVE(R)  ((R).bits.is_active)
+#define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
+#define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
+
+
+/* Call this when have matched a real character; it sets `matched' flags
+   for the subexpressions which we are currently inside.  Also records
+   that those subexprs have matched.  */
+#define SET_REGS_MATCHED()						\
+  do									\
+    {									\
+      if (!set_regs_matched_done)					\
+	{								\
+	  active_reg_t r;						\
+	  set_regs_matched_done = 1;					\
+	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
+	    {								\
+	      MATCHED_SOMETHING (reg_info[r])				\
+		= EVER_MATCHED_SOMETHING (reg_info[r])			\
+		= 1;							\
+	    }								\
+	}								\
+    }									\
+  while (0)
+
+/* Registers are set to a sentinel when they haven't yet matched.  */
+static char reg_unset_dummy;
+#define REG_UNSET_VALUE (&reg_unset_dummy)
+#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
+
+/* Subroutine declarations and macros for regex_compile.  */
+
+static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
+					      reg_syntax_t syntax,
+					      struct re_pattern_buffer *bufp));
+static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
+static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
+				 int arg1, int arg2));
+static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
+				  int arg, unsigned char *end));
+static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
+				  int arg1, int arg2, unsigned char *end));
+static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
+					   reg_syntax_t syntax));
+static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
+					   reg_syntax_t syntax));
+static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
+					      const char *pend,
+					      char *translate,
+					      reg_syntax_t syntax,
+					      unsigned char *b));
+
+/* Fetch the next character in the uncompiled pattern---translating it
+   if necessary.  Also cast from a signed character in the constant
+   string passed to us by the user to an unsigned char that we can use
+   as an array index (in, e.g., `translate').  */
+#ifndef PATFETCH
+#define PATFETCH(c)							\
+  do {if (p == pend) return REG_EEND;					\
+    c = (unsigned char) *p++;						\
+    if (translate) c = (unsigned char) translate[c];			\
+  } while (0)
+#endif
+
+/* Fetch the next character in the uncompiled pattern, with no
+   translation.  */
+#define PATFETCH_RAW(c)							\
+  do {if (p == pend) return REG_EEND;					\
+    c = (unsigned char) *p++; 						\
+  } while (0)
+
+/* Go backwards one character in the pattern.  */
+#define PATUNFETCH p--
+
+
+/* If `translate' is non-null, return translate[D], else just D.  We
+   cast the subscript to translate because some data is declared as
+   `char *', to avoid warnings when a string constant is passed.  But
+   when we use a character as a subscript we must make it unsigned.  */
+#ifndef TRANSLATE
+#define TRANSLATE(d) \
+  (translate ? (char) translate[(unsigned char) (d)] : (d))
+#endif
+
+
+/* Macros for outputting the compiled pattern into `buffer'.  */
+
+/* If the buffer isn't allocated when it comes in, use this.  */
+#define INIT_BUF_SIZE  32
+
+/* Make sure we have at least N more bytes of space in buffer.  */
+#define GET_BUFFER_SPACE(n)						\
+    while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)	\
+      EXTEND_BUFFER ()
+
+/* Make sure we have one more byte of buffer space and then add C to it.  */
+#define BUF_PUSH(c)							\
+  do {									\
+    GET_BUFFER_SPACE (1);						\
+    *b++ = (unsigned char) (c);						\
+  } while (0)
+
+
+/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
+#define BUF_PUSH_2(c1, c2)						\
+  do {									\
+    GET_BUFFER_SPACE (2);						\
+    *b++ = (unsigned char) (c1);					\
+    *b++ = (unsigned char) (c2);					\
+  } while (0)
+
+
+/* As with BUF_PUSH_2, except for three bytes.  */
+#define BUF_PUSH_3(c1, c2, c3)						\
+  do {									\
+    GET_BUFFER_SPACE (3);						\
+    *b++ = (unsigned char) (c1);					\
+    *b++ = (unsigned char) (c2);					\
+    *b++ = (unsigned char) (c3);					\
+  } while (0)
+
+
+/* Store a jump with opcode OP at LOC to location TO.  We store a
+   relative address offset by the three bytes the jump itself occupies.  */
+#define STORE_JUMP(op, loc, to) \
+  store_op1 (op, loc, (int) ((to) - (loc) - 3))
+
+/* Likewise, for a two-argument jump.  */
+#define STORE_JUMP2(op, loc, to, arg) \
+  store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
+
+/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
+#define INSERT_JUMP(op, loc, to) \
+  insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
+
+/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
+#define INSERT_JUMP2(op, loc, to, arg) \
+  insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
+
+
+/* This is not an arbitrary limit: the arguments which represent offsets
+   into the pattern are two bytes long.  So if 2^16 bytes turns out to
+   be too small, many things would have to change.  */
+/* Any other compiler which, like MSC, has allocation limit below 2^16
+   bytes will have to use approach similar to what was done below for
+   MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
+   reallocating to 0 bytes.  Such thing is not going to work too well.
+   You have been warned!!  */
+#if defined(_MSC_VER)  && !defined(WIN32)
+/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
+   The REALLOC define eliminates a flurry of conversion warnings,
+   but is not required. */
+#define MAX_BUF_SIZE  65500L
+#define REALLOC(p,s) realloc ((p), (size_t) (s))
+#else
+#define MAX_BUF_SIZE (1L << 16)
+#define REALLOC(p,s) realloc ((p), (s))
+#endif
+
+/* Extend the buffer by twice its current size via realloc and
+   reset the pointers that pointed into the old block to point to the
+   correct places in the new one.  If extending the buffer results in it
+   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
+#define EXTEND_BUFFER()							\
+  do { 									\
+    unsigned char *old_buffer = bufp->buffer;				\
+    if (bufp->allocated == MAX_BUF_SIZE) 				\
+      return REG_ESIZE;							\
+    bufp->allocated <<= 1;						\
+    if (bufp->allocated > MAX_BUF_SIZE)					\
+      bufp->allocated = MAX_BUF_SIZE; 					\
+    bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
+    if (bufp->buffer == NULL)						\
+      return REG_ESPACE;						\
+    /* If the buffer moved, move all the pointers into it.  */		\
+    if (old_buffer != bufp->buffer)					\
+      {									\
+        b = (b - old_buffer) + bufp->buffer;				\
+        begalt = (begalt - old_buffer) + bufp->buffer;			\
+        if (fixup_alt_jump)						\
+          fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
+        if (laststart)							\
+          laststart = (laststart - old_buffer) + bufp->buffer;		\
+        if (pending_exact)						\
+          pending_exact = (pending_exact - old_buffer) + bufp->buffer;	\
+      }									\
+  } while (0)
+
+
+/* Since we have one byte reserved for the register number argument to
+   {start,stop}_memory, the maximum number of groups we can report
+   things about is what fits in that byte.  */
+#define MAX_REGNUM 255
+
+/* But patterns can have more than `MAX_REGNUM' registers.  We just
+   ignore the excess.  */
+typedef unsigned regnum_t;
+
+
+/* Macros for the compile stack.  */
+
+/* Since offsets can go either forwards or backwards, this type needs to
+   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
+/* int may be not enough when sizeof(int) == 2.  */
+typedef long pattern_offset_t;
+
+typedef struct
+{
+  pattern_offset_t begalt_offset;
+  pattern_offset_t fixup_alt_jump;
+  pattern_offset_t inner_group_offset;
+  pattern_offset_t laststart_offset;
+  regnum_t regnum;
+} compile_stack_elt_t;
+
+
+typedef struct
+{
+  compile_stack_elt_t *stack;
+  unsigned size;
+  unsigned avail;			/* Offset of next open position.  */
+} compile_stack_type;
+
+
+#define INIT_COMPILE_STACK_SIZE 32
+
+#define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
+#define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
+
+/* The next available element.  */
+#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
+
+
+/* Set the bit for character C in a list.  */
+#define SET_LIST_BIT(c)                               \
+  (b[((unsigned char) (c)) / BYTEWIDTH]               \
+   |= 1 << (((unsigned char) c) % BYTEWIDTH))
+
+
+/* Get the next unsigned number in the uncompiled pattern.  */
+#define GET_UNSIGNED_NUMBER(num) 					\
+  { if (p != pend)							\
+     {									\
+       PATFETCH (c); 							\
+       while (ISDIGIT (c)) 						\
+         { 								\
+           if (num < 0)							\
+              num = 0;							\
+           num = num * 10 + c - '0'; 					\
+           if (p == pend) 						\
+              break; 							\
+           PATFETCH (c);						\
+         } 								\
+       } 								\
+    }
+
+#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
+/* The GNU C library provides support for user-defined character classes
+   and the functions from ISO C amendement 1.  */
+# ifdef CHARCLASS_NAME_MAX
+#  define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
+# else
+/* This shouldn't happen but some implementation might still have this
+   problem.  Use a reasonable default value.  */
+#  define CHAR_CLASS_MAX_LENGTH 256
 # endif
+
+# define IS_CHAR_CLASS(string) wctype (string)
+#else
+# define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
+
+# define IS_CHAR_CLASS(string)						\
+   (STREQ (string, "alpha") || STREQ (string, "upper")			\
+    || STREQ (string, "lower") || STREQ (string, "digit")		\
+    || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
+    || STREQ (string, "space") || STREQ (string, "print")		\
+    || STREQ (string, "punct") || STREQ (string, "graph")		\
+    || STREQ (string, "cntrl") || STREQ (string, "blank"))
 #endif
+
+#ifndef MATCH_MAY_ALLOCATE
+
+/* If we cannot allocate large objects within re_match_2_internal,
+   we make the fail stack and register vectors global.
+   The fail stack, we grow to the maximum size when a regexp
+   is compiled.
+   The register vectors, we adjust in size each time we
+   compile a regexp, according to the number of registers it needs.  */
+
+static fail_stack_type fail_stack;
+
+/* Size with which the following vectors are currently allocated.
+   That is so we can make them bigger as needed,
+   but never make them smaller.  */
+static int regs_allocated_size;
+
+static const char **     regstart, **     regend;
+static const char ** old_regstart, ** old_regend;
+static const char **best_regstart, **best_regend;
+static register_info_type *reg_info;
+static const char **reg_dummy;
+static register_info_type *reg_info_dummy;
+
+/* Make the register vectors big enough for NUM_REGS registers,
+   but don't make them smaller.  */
+
+static
+regex_grow_registers (num_regs)
+     int num_regs;
+{
+  if (num_regs > regs_allocated_size)
+    {
+      RETALLOC_IF (regstart,	 num_regs, const char *);
+      RETALLOC_IF (regend,	 num_regs, const char *);
+      RETALLOC_IF (old_regstart, num_regs, const char *);
+      RETALLOC_IF (old_regend,	 num_regs, const char *);
+      RETALLOC_IF (best_regstart, num_regs, const char *);
+      RETALLOC_IF (best_regend,	 num_regs, const char *);
+      RETALLOC_IF (reg_info,	 num_regs, register_info_type);
+      RETALLOC_IF (reg_dummy,	 num_regs, const char *);
+      RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
+
+      regs_allocated_size = num_regs;
+    }
+}
+
+#endif /* not MATCH_MAY_ALLOCATE */
+
+static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
+						 compile_stack,
+						 regnum_t regnum));
+
+/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
+   Returns one of error codes defined in `regex.h', or zero for success.
+
+   Assumes the `allocated' (and perhaps `buffer') and `translate'
+   fields are set in BUFP on entry.
+
+   If it succeeds, results are put in BUFP (if it returns an error, the
+   contents of BUFP are undefined):
+     `buffer' is the compiled pattern;
+     `syntax' is set to SYNTAX;
+     `used' is set to the length of the compiled pattern;
+     `fastmap_accurate' is zero;
+     `re_nsub' is the number of subexpressions in PATTERN;
+     `not_bol' and `not_eol' are zero;
+
+   The `fastmap' and `newline_anchor' fields are neither
+   examined nor set.  */
+
+/* Return, freeing storage we allocated.  */
+#define FREE_STACK_RETURN(value)		\
+  return (free (compile_stack.stack), value)
+
+static reg_errcode_t
+regex_compile (pattern, size, syntax, bufp)
+     const char *pattern;
+     size_t size;
+     reg_syntax_t syntax;
+     struct re_pattern_buffer *bufp;
+{
+  /* We fetch characters from PATTERN here.  Even though PATTERN is
+     `char *' (i.e., signed), we declare these variables as unsigned, so
+     they can be reliably used as array indices.  */
+  register unsigned char c, c1;
+
+  /* A random temporary spot in PATTERN.  */
+  const char *p1;
+
+  /* Points to the end of the buffer, where we should append.  */
+  register unsigned char *b;
+
+  /* Keeps track of unclosed groups.  */
+  compile_stack_type compile_stack;
+
+  /* Points to the current (ending) position in the pattern.  */
+  const char *p = pattern;
+  const char *pend = pattern + size;
+
+  /* How to translate the characters in the pattern.  */
+  RE_TRANSLATE_TYPE translate = bufp->translate;
+
+  /* Address of the count-byte of the most recently inserted `exactn'
+     command.  This makes it possible to tell if a new exact-match
+     character can be added to that command or if the character requires
+     a new `exactn' command.  */
+  unsigned char *pending_exact = 0;
+
+  /* Address of start of the most recently finished expression.
+     This tells, e.g., postfix * where to find the start of its
+     operand.  Reset at the beginning of groups and alternatives.  */
+  unsigned char *laststart = 0;
+
+  /* Address of beginning of regexp, or inside of last group.  */
+  unsigned char *begalt;
+
+  /* Place in the uncompiled pattern (i.e., the {) to
+     which to go back if the interval is invalid.  */
+  const char *beg_interval;
+
+  /* Address of the place where a forward jump should go to the end of
+     the containing expression.  Each alternative of an `or' -- except the
+     last -- ends with a forward jump of this sort.  */
+  unsigned char *fixup_alt_jump = 0;
+
+  /* Counts open-groups as they are encountered.  Remembered for the
+     matching close-group on the compile stack, so the same register
+     number is put in the stop_memory as the start_memory.  */
+  regnum_t regnum = 0;
+
+#ifdef DEBUG
+  DEBUG_PRINT1 ("\nCompiling pattern: ");
+  if (debug)
+    {
+      unsigned debug_count;
+
+      for (debug_count = 0; debug_count < size; debug_count++)
+        putchar (pattern[debug_count]);
+      putchar ('\n');
+    }
+#endif /* DEBUG */
+
+  /* Initialize the compile stack.  */
+  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
+  if (compile_stack.stack == NULL)
+    return REG_ESPACE;
+
+  compile_stack.size = INIT_COMPILE_STACK_SIZE;
+  compile_stack.avail = 0;
+
+  /* Initialize the pattern buffer.  */
+  bufp->syntax = syntax;
+  bufp->fastmap_accurate = 0;
+  bufp->not_bol = bufp->not_eol = 0;
+
+  /* Set `used' to zero, so that if we return an error, the pattern
+     printer (for debugging) will think there's no pattern.  We reset it
+     at the end.  */
+  bufp->used = 0;
+
+  /* Always count groups, whether or not bufp->no_sub is set.  */
+  bufp->re_nsub = 0;
+
+#if !defined (emacs) && !defined (SYNTAX_TABLE)
+  /* Initialize the syntax table.  */
+   init_syntax_once ();
+#endif
+
+  if (bufp->allocated == 0)
+    {
+      if (bufp->buffer)
+	{ /* If zero allocated, but buffer is non-null, try to realloc
+             enough space.  This loses if buffer's address is bogus, but
+             that is the user's responsibility.  */
+          RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
+        }
+      else
+        { /* Caller did not allocate a buffer.  Do it for them.  */
+          bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
+        }
+      if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
+
+      bufp->allocated = INIT_BUF_SIZE;
+    }
+
+  begalt = b = bufp->buffer;
+
+  /* Loop through the uncompiled pattern until we're at the end.  */
+  while (p != pend)
+    {
+      PATFETCH (c);
+
+      switch (c)
+        {
+        case '^':
+          {
+            if (   /* If at start of pattern, it's an operator.  */
+                   p == pattern + 1
+                   /* If context independent, it's an operator.  */
+                || syntax & RE_CONTEXT_INDEP_ANCHORS
+                   /* Otherwise, depends on what's come before.  */
+                || at_begline_loc_p (pattern, p, syntax))
+              BUF_PUSH (begline);
+            else
+              goto normal_char;
+          }
+          break;
+
+
+        case '$':
+          {
+            if (   /* If at end of pattern, it's an operator.  */
+                   p == pend
+                   /* If context independent, it's an operator.  */
+                || syntax & RE_CONTEXT_INDEP_ANCHORS
+                   /* Otherwise, depends on what's next.  */
+                || at_endline_loc_p (p, pend, syntax))
+               BUF_PUSH (endline);
+             else
+               goto normal_char;
+           }
+           break;
+
+
+	case '+':
+        case '?':
+          if ((syntax & RE_BK_PLUS_QM)
+              || (syntax & RE_LIMITED_OPS))
+            goto normal_char;
+        handle_plus:
+        case '*':
+          /* If there is no previous pattern... */
+          if (!laststart)
+            {
+              if (syntax & RE_CONTEXT_INVALID_OPS)
+                FREE_STACK_RETURN (REG_BADRPT);
+              else if (!(syntax & RE_CONTEXT_INDEP_OPS))
+                goto normal_char;
+            }
+
+          {
+            /* Are we optimizing this jump?  */
+            boolean keep_string_p = false;
+
+            /* 1 means zero (many) matches is allowed.  */
+            char zero_times_ok = 0, many_times_ok = 0;
+
+            /* If there is a sequence of repetition chars, collapse it
+               down to just one (the right one).  We can't combine
+               interval operators with these because of, e.g., `a{2}*',
+               which should only match an even number of `a's.  */
+
+            for (;;)
+              {
+                zero_times_ok |= c != '+';
+                many_times_ok |= c != '?';
+
+                if (p == pend)
+                  break;
+
+                PATFETCH (c);
+
+                if (c == '*'
+                    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
+                  ;
+
+                else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
+                  {
+                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
+
+                    PATFETCH (c1);
+                    if (!(c1 == '+' || c1 == '?'))
+                      {
+                        PATUNFETCH;
+                        PATUNFETCH;
+                        break;
+                      }
+
+                    c = c1;
+                  }
+                else
+                  {
+                    PATUNFETCH;
+                    break;
+                  }
+
+                /* If we get here, we found another repeat character.  */
+               }
+
+            /* Star, etc. applied to an empty pattern is equivalent
+               to an empty pattern.  */
+            if (!laststart)
+              break;
+
+            /* Now we know whether or not zero matches is allowed
+               and also whether or not two or more matches is allowed.  */
+            if (many_times_ok)
+              { /* More than one repetition is allowed, so put in at the
+                   end a backward relative jump from `b' to before the next
+                   jump we're going to put in below (which jumps from
+                   laststart to after this jump).
+
+                   But if we are at the `*' in the exact sequence `.*\n',
+                   insert an unconditional jump backwards to the .,
+                   instead of the beginning of the loop.  This way we only
+                   push a failure point once, instead of every time
+                   through the loop.  */
+                assert (p - 1 > pattern);
+
+                /* Allocate the space for the jump.  */
+                GET_BUFFER_SPACE (3);
+
+                /* We know we are not at the first character of the pattern,
+                   because laststart was nonzero.  And we've already
+                   incremented `p', by the way, to be the character after
+                   the `*'.  Do we have to do something analogous here
+                   for null bytes, because of RE_DOT_NOT_NULL?  */
+                if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
+		    && zero_times_ok
+                    && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
+                    && !(syntax & RE_DOT_NEWLINE))
+                  { /* We have .*\n.  */
+                    STORE_JUMP (jump, b, laststart);
+                    keep_string_p = true;
+                  }
+                else
+                  /* Anything else.  */
+                  STORE_JUMP (maybe_pop_jump, b, laststart - 3);
+
+                /* We've added more stuff to the buffer.  */
+                b += 3;
+              }
+
+            /* On failure, jump from laststart to b + 3, which will be the
+               end of the buffer after this jump is inserted.  */
+            GET_BUFFER_SPACE (3);
+            INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
+                                       : on_failure_jump,
+                         laststart, b + 3);
+            pending_exact = 0;
+            b += 3;
+
+            if (!zero_times_ok)
+              {
+                /* At least one repetition is required, so insert a
+                   `dummy_failure_jump' before the initial
+                   `on_failure_jump' instruction of the loop. This
+                   effects a skip over that instruction the first time
+                   we hit that loop.  */
+                GET_BUFFER_SPACE (3);
+                INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
+                b += 3;
+              }
+            }
+	  break;
+
+
+	case '.':
+          laststart = b;
+          BUF_PUSH (anychar);
+          break;
+
+
+        case '[':
+          {
+            boolean had_char_class = false;
+
+            if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+
+            /* Ensure that we have enough space to push a charset: the
+               opcode, the length count, and the bitset; 34 bytes in all.  */
+	    GET_BUFFER_SPACE (34);
+
+            laststart = b;
+
+            /* We test `*p == '^' twice, instead of using an if
+               statement, so we only need one BUF_PUSH.  */
+            BUF_PUSH (*p == '^' ? charset_not : charset);
+            if (*p == '^')
+              p++;
+
+            /* Remember the first position in the bracket expression.  */
+            p1 = p;
+
+            /* Push the number of bytes in the bitmap.  */
+            BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
+
+            /* Clear the whole map.  */
+            bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
+
+            /* charset_not matches newline according to a syntax bit.  */
+            if ((re_opcode_t) b[-2] == charset_not
+                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
+              SET_LIST_BIT ('\n');
+
+            /* Read in characters and ranges, setting map bits.  */
+            for (;;)
+              {
+                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+
+                PATFETCH (c);
+
+                /* \ might escape characters inside [...] and [^...].  */
+                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
+                  {
+                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
+
+                    PATFETCH (c1);
+                    SET_LIST_BIT (c1);
+                    continue;
+                  }
+
+                /* Could be the end of the bracket expression.  If it's
+                   not (i.e., when the bracket expression is `[]' so
+                   far), the ']' character bit gets set way below.  */
+                if (c == ']' && p != p1 + 1)
+                  break;
+
+                /* Look ahead to see if it's a range when the last thing
+                   was a character class.  */
+                if (had_char_class && c == '-' && *p != ']')
+                  FREE_STACK_RETURN (REG_ERANGE);
+
+                /* Look ahead to see if it's a range when the last thing
+                   was a character: if this is a hyphen not at the
+                   beginning or the end of a list, then it's the range
+                   operator.  */
+                if (c == '-'
+                    && !(p - 2 >= pattern && p[-2] == '[')
+                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
+                    && *p != ']')
+                  {
+                    reg_errcode_t ret
+                      = compile_range (&p, pend, translate, syntax, b);
+                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
+                  }
+
+                else if (p[0] == '-' && p[1] != ']')
+                  { /* This handles ranges made up of characters only.  */
+                    reg_errcode_t ret;
+
+		    /* Move past the `-'.  */
+                    PATFETCH (c1);
+
+                    ret = compile_range (&p, pend, translate, syntax, b);
+                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
+                  }
+
+                /* See if we're at the beginning of a possible character
+                   class.  */
+
+                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
+                  { /* Leave room for the null.  */
+                    char str[CHAR_CLASS_MAX_LENGTH + 1];
+
+                    PATFETCH (c);
+                    c1 = 0;
+
+                    /* If pattern is `[[:'.  */
+                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+
+                    for (;;)
+                      {
+                        PATFETCH (c);
+                        if (c == ':' || c == ']' || p == pend
+                            || c1 == CHAR_CLASS_MAX_LENGTH)
+                          break;
+                        str[c1++] = c;
+                      }
+                    str[c1] = '\0';
+
+                    /* If isn't a word bracketed by `[:' and:`]':
+                       undo the ending character, the letters, and leave
+                       the leading `:' and `[' (but set bits for them).  */
+                    if (c == ':' && *p == ']')
+                      {
+#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
+                        boolean is_lower = STREQ (str, "lower");
+                        boolean is_upper = STREQ (str, "upper");
+			wctype_t wt;
+                        int ch;
+
+			wt = wctype (str);
+			if (wt == 0)
+			  FREE_STACK_RETURN (REG_ECTYPE);
+
+                        /* Throw away the ] at the end of the character
+                           class.  */
+                        PATFETCH (c);
+
+                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+
+                        for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
+			  {
+			    if (iswctype (btowc (ch), wt))
+			      SET_LIST_BIT (ch);
+
+			    if (translate && (is_upper || is_lower)
+				&& (ISUPPER (ch) || ISLOWER (ch)))
+			      SET_LIST_BIT (ch);
+			  }
+
+                        had_char_class = true;
+#else
+                        int ch;
+                        boolean is_alnum = STREQ (str, "alnum");
+                        boolean is_alpha = STREQ (str, "alpha");
+                        boolean is_blank = STREQ (str, "blank");
+                        boolean is_cntrl = STREQ (str, "cntrl");
+                        boolean is_digit = STREQ (str, "digit");
+                        boolean is_graph = STREQ (str, "graph");
+                        boolean is_lower = STREQ (str, "lower");
+                        boolean is_print = STREQ (str, "print");
+                        boolean is_punct = STREQ (str, "punct");
+                        boolean is_space = STREQ (str, "space");
+                        boolean is_upper = STREQ (str, "upper");
+                        boolean is_xdigit = STREQ (str, "xdigit");
+
+                        if (!IS_CHAR_CLASS (str))
+			  FREE_STACK_RETURN (REG_ECTYPE);
+
+                        /* Throw away the ] at the end of the character
+                           class.  */
+                        PATFETCH (c);
+
+                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+
+								for (ch = 0; ch < (1 << BYTEWIDTH); ch++)
+                          {
+			    /* This was split into 3 if's to
+			       avoid an arbitrary limit in some compiler.  */
+                            if (   (is_alnum  && ISALNUM (ch))
+                                || (is_alpha  && ISALPHA (ch))
+                                || (is_blank  && ISBLANK (ch))
+                                || (is_cntrl  && ISCNTRL (ch)))
+			      SET_LIST_BIT (ch);
+			    if (   (is_digit  && ISDIGIT (ch))
+                                || (is_graph  && ISGRAPH (ch))
+                                || (is_lower  && ISLOWER (ch))
+                                || (is_print  && ISPRINT (ch)))
+			      SET_LIST_BIT (ch);
+			    if (   (is_punct  && ISPUNCT (ch))
+                                || (is_space  && ISSPACE (ch))
+                                || (is_upper  && ISUPPER (ch))
+                                || (is_xdigit && ISXDIGIT (ch)))
+			      SET_LIST_BIT (ch);
+			    if (   translate && (is_upper || is_lower)
+				&& (ISUPPER (ch) || ISLOWER (ch)))
+			      SET_LIST_BIT (ch);
+                          }
+                        had_char_class = true;
+#endif	/* libc || wctype.h */
+                      }
+                    else
+                      {
+                        c1++;
+                        while (c1--)
+                          PATUNFETCH;
+                        SET_LIST_BIT ('[');
+                        SET_LIST_BIT (':');
+                        had_char_class = false;
+                      }
+                  }
+                else
+                  {
+                    had_char_class = false;
+                    SET_LIST_BIT (c);
+                  }
+              }
+
+            /* Discard any (non)matching list bytes that are all 0 at the
+               end of the map.  Decrease the map-length byte too.  */
+            while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
+              b[-1]--;
+            b += b[-1];
+          }
+          break;
+
+
+	case '(':
+          if (syntax & RE_NO_BK_PARENS)
+            goto handle_open;
+          else
+            goto normal_char;
+
+
+        case ')':
+          if (syntax & RE_NO_BK_PARENS)
+            goto handle_close;
+          else
+            goto normal_char;
+
+
+        case '\n':
+          if (syntax & RE_NEWLINE_ALT)
+            goto handle_alt;
+          else
+            goto normal_char;
+
+
+	case '|':
+          if (syntax & RE_NO_BK_VBAR)
+            goto handle_alt;
+          else
+            goto normal_char;
+
+
+        case '{':
+           if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
+             goto handle_interval;
+           else
+             goto normal_char;
+
+
+        case '\\':
+          if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
+
+          /* Do not translate the character after the \, so that we can
+             distinguish, e.g., \B from \b, even if we normally would
+             translate, e.g., B to b.  */
+          PATFETCH_RAW (c);
+
+          switch (c)
+            {
+            case '(':
+              if (syntax & RE_NO_BK_PARENS)
+                goto normal_backslash;
+
+            handle_open:
+              bufp->re_nsub++;
+              regnum++;
+
+              if (COMPILE_STACK_FULL)
+                {
+                  RETALLOC (compile_stack.stack, compile_stack.size << 1,
+                            compile_stack_elt_t);
+                  if (compile_stack.stack == NULL) return REG_ESPACE;
+
+                  compile_stack.size <<= 1;
+                }
+
+              /* These are the values to restore when we hit end of this
+                 group.  They are all relative offsets, so that if the
+                 whole pattern moves because of realloc, they will still
+                 be valid.  */
+              COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
+              COMPILE_STACK_TOP.fixup_alt_jump
+                = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
+              COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
+              COMPILE_STACK_TOP.regnum = regnum;
+
+              /* We will eventually replace the 0 with the number of
+                 groups inner to this one.  But do not push a
+                 start_memory for groups beyond the last one we can
+                 represent in the compiled pattern.  */
+              if (regnum <= MAX_REGNUM)
+                {
+                  COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
+                  BUF_PUSH_3 (start_memory, regnum, 0);
+                }
+
+              compile_stack.avail++;
+
+              fixup_alt_jump = 0;
+              laststart = 0;
+              begalt = b;
+	      /* If we've reached MAX_REGNUM groups, then this open
+		 won't actually generate any code, so we'll have to
+		 clear pending_exact explicitly.  */
+	      pending_exact = 0;
+              break;
+
+
+            case ')':
+              if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
+
+              if (COMPILE_STACK_EMPTY) {
+                if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
+                  goto normal_backslash;
+		}
+                else FREE_STACK_RETURN (REG_ERPAREN);
+
+            handle_close:
+              if (fixup_alt_jump)
+                { /* Push a dummy failure point at the end of the
+                     alternative for a possible future
+                     `pop_failure_jump' to pop.  See comments at
+                     `push_dummy_failure' in `re_match_2'.  */
+                  BUF_PUSH (push_dummy_failure);
+
+                  /* We allocated space for this jump when we assigned
+                     to `fixup_alt_jump', in the `handle_alt' case below.  */
+                  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
+                }
+
+              /* See similar code for backslashed left paren above.  */
+              if (COMPILE_STACK_EMPTY) {
+                if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
+                  goto normal_char;
+		}
+                else FREE_STACK_RETURN (REG_ERPAREN);
+
+              /* Since we just checked for an empty stack above, this
+                 ``can't happen''.  */
+              assert (compile_stack.avail != 0);
+              {
+                /* We don't just want to restore into `regnum', because
+                   later groups should continue to be numbered higher,
+                   as in `(ab)c(de)' -- the second group is #2.  */
+                regnum_t this_group_regnum;
+
+                compile_stack.avail--;
+                begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
+                fixup_alt_jump
+                  = COMPILE_STACK_TOP.fixup_alt_jump
+                    ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
+                    : 0;
+                laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
+                this_group_regnum = COMPILE_STACK_TOP.regnum;
+		/* If we've reached MAX_REGNUM groups, then this open
+		   won't actually generate any code, so we'll have to
+		   clear pending_exact explicitly.  */
+		pending_exact = 0;
+
+                /* We're at the end of the group, so now we know how many
+                   groups were inside this one.  */
+                if (this_group_regnum <= MAX_REGNUM)
+                  {
+                    unsigned char *inner_group_loc
+                      = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
+
+                    *inner_group_loc = regnum - this_group_regnum;
+                    BUF_PUSH_3 (stop_memory, this_group_regnum,
+										  regnum - this_group_regnum);
+                  }
+              }
+              break;
+
+
+            case '|':					/* `\|'.  */
+              if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
+                goto normal_backslash;
+            handle_alt:
+              if (syntax & RE_LIMITED_OPS)
+                goto normal_char;
+
+              /* Insert before the previous alternative a jump which
+                 jumps to this alternative if the former fails.  */
+              GET_BUFFER_SPACE (3);
+              INSERT_JUMP (on_failure_jump, begalt, b + 6);
+              pending_exact = 0;
+              b += 3;
+
+              /* The alternative before this one has a jump after it
+                 which gets executed if it gets matched.  Adjust that
+                 jump so it will jump to this alternative's analogous
+                 jump (put in below, which in turn will jump to the next
+                 (if any) alternative's such jump, etc.).  The last such
+                 jump jumps to the correct final destination.  A picture:
+                          _____ _____
+                          |   | |   |
+                          |   v |   v
+                         a | b   | c
+
+                 If we are at `b', then fixup_alt_jump right now points to a
+                 three-byte space after `a'.  We'll put in the jump, set
+                 fixup_alt_jump to right after `b', and leave behind three
+                 bytes which we'll fill in when we get to after `c'.  */
+
+              if (fixup_alt_jump)
+                STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
+
+              /* Mark and leave space for a jump after this alternative,
+                 to be filled in later either by next alternative or
+                 when know we're at the end of a series of alternatives.  */
+              fixup_alt_jump = b;
+              GET_BUFFER_SPACE (3);
+              b += 3;
+
+              laststart = 0;
+              begalt = b;
+              break;
+
+
+            case '{':
+              /* If \{ is a literal.  */
+              if (!(syntax & RE_INTERVALS)
+                     /* If we're at `\{' and it's not the open-interval
+                        operator.  */
+                  || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
+                  || (p - 2 == pattern  &&  p == pend))
+                goto normal_backslash;
+
+            handle_interval:
+              {
+                /* If got here, then the syntax allows intervals.  */
+
+                /* At least (most) this many matches must be made.  */
+                int lower_bound = -1, upper_bound = -1;
+
+                beg_interval = p - 1;
+
+                if (p == pend)
+                  {
+                    if (syntax & RE_NO_BK_BRACES)
+                      goto unfetch_interval;
+                    else
+                      FREE_STACK_RETURN (REG_EBRACE);
+                  }
+
+                GET_UNSIGNED_NUMBER (lower_bound);
+
+                if (c == ',')
+                  {
+                    GET_UNSIGNED_NUMBER (upper_bound);
+                    if (upper_bound < 0) upper_bound = RE_DUP_MAX;
+                  }
+                else
+                  /* Interval such as `{1}' => match exactly once. */
+                  upper_bound = lower_bound;
+
+                if (lower_bound < 0 || upper_bound > RE_DUP_MAX
+                    || lower_bound > upper_bound)
+                  {
+                    if (syntax & RE_NO_BK_BRACES)
+                      goto unfetch_interval;
+                    else
+                      FREE_STACK_RETURN (REG_BADBR);
+                  }
+
+                if (!(syntax & RE_NO_BK_BRACES))
+                  {
+                    if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
+
+                    PATFETCH (c);
+                  }
+
+                if (c != '}')
+                  {
+                    if (syntax & RE_NO_BK_BRACES)
+                      goto unfetch_interval;
+                    else
+                      FREE_STACK_RETURN (REG_BADBR);
+                  }
+
+                /* We just parsed a valid interval.  */
+
+                /* If it's invalid to have no preceding re.  */
+                if (!laststart)
+                  {
+                    if (syntax & RE_CONTEXT_INVALID_OPS)
+                      FREE_STACK_RETURN (REG_BADRPT);
+                    else if (syntax & RE_CONTEXT_INDEP_OPS)
+                      laststart = b;
+                    else
+                      goto unfetch_interval;
+                  }
+
+                /* If the upper bound is zero, don't want to succeed at
+                   all; jump from `laststart' to `b + 3', which will be
+                   the end of the buffer after we insert the jump.  */
+                 if (upper_bound == 0)
+                   {
+                     GET_BUFFER_SPACE (3);
+                     INSERT_JUMP (jump, laststart, b + 3);
+                     b += 3;
+                   }
+
+                 /* Otherwise, we have a nontrivial interval.  When
+                    we're all done, the pattern will look like:
+                      set_number_at <jump count> <upper bound>
+                      set_number_at <succeed_n count> <lower bound>
+                      succeed_n <after jump addr> <succeed_n count>
+                      <body of loop>
+                      jump_n <succeed_n addr> <jump count>
+                    (The upper bound and `jump_n' are omitted if
+                    `upper_bound' is 1, though.)  */
+                 else
+                   { /* If the upper bound is > 1, we need to insert
+                        more at the end of the loop.  */
+                     unsigned nbytes = 10 + (upper_bound > 1) * 10;
+
+                     GET_BUFFER_SPACE (nbytes);
+
+                     /* Initialize lower bound of the `succeed_n', even
+                        though it will be set during matching by its
+                        attendant `set_number_at' (inserted next),
+                        because `re_compile_fastmap' needs to know.
+                        Jump to the `jump_n' we might insert below.  */
+                     INSERT_JUMP2 (succeed_n, laststart,
+                                   b + 5 + (upper_bound > 1) * 5,
+                                   lower_bound);
+                     b += 5;
+
+                     /* Code to initialize the lower bound.  Insert
+                        before the `succeed_n'.  The `5' is the last two
+                        bytes of this `set_number_at', plus 3 bytes of
+                        the following `succeed_n'.  */
+                     insert_op2 (set_number_at, laststart, 5, lower_bound, b);
+                     b += 5;
+
+                     if (upper_bound > 1)
+                       { /* More than one repetition is allowed, so
+                            append a backward jump to the `succeed_n'
+                            that starts this interval.
+
+                            When we've reached this during matching,
+                            we'll have matched the interval once, so
+                            jump back only `upper_bound - 1' times.  */
+                         STORE_JUMP2 (jump_n, b, laststart + 5,
+                                      upper_bound - 1);
+                         b += 5;
+
+                         /* The location we want to set is the second
+                            parameter of the `jump_n'; that is `b-2' as
+                            an absolute address.  `laststart' will be
+                            the `set_number_at' we're about to insert;
+                            `laststart+3' the number to set, the source
+                            for the relative address.  But we are
+                            inserting into the middle of the pattern --
+                            so everything is getting moved up by 5.
+                            Conclusion: (b - 2) - (laststart + 3) + 5,
+                            i.e., b - laststart.
+
+                            We insert this at the beginning of the loop
+                            so that if we fail during matching, we'll
+                            reinitialize the bounds.  */
+                         insert_op2 (set_number_at, laststart, b - laststart,
+                                     upper_bound - 1, b);
+                         b += 5;
+                       }
+                   }
+                pending_exact = 0;
+                beg_interval = NULL;
+              }
+              break;
+
+            unfetch_interval:
+              /* If an invalid interval, match the characters as literals.  */
+               assert (beg_interval);
+               p = beg_interval;
+               beg_interval = NULL;
+
+               /* normal_char and normal_backslash need `c'.  */
+               PATFETCH (c);
+
+               if (!(syntax & RE_NO_BK_BRACES))
+                 {
+                   if (p > pattern  &&  p[-1] == '\\')
+                     goto normal_backslash;
+                 }
+               goto normal_char;
+
+#ifdef emacs
+            /* There is no way to specify the before_dot and after_dot
+               operators.  rms says this is ok.  --karl  */
+            case '=':
+              BUF_PUSH (at_dot);
+              break;
+
+            case 's':
+              laststart = b;
+              PATFETCH (c);
+              BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
+              break;
+
+            case 'S':
+              laststart = b;
+              PATFETCH (c);
+              BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
+              break;
+#endif /* emacs */
+
+
+            case 'w':
+	      if (re_syntax_options & RE_NO_GNU_OPS)
+		goto normal_char;
+              laststart = b;
+              BUF_PUSH (wordchar);
+              break;
+
+
+            case 'W':
+	      if (re_syntax_options & RE_NO_GNU_OPS)
+		goto normal_char;
+              laststart = b;
+              BUF_PUSH (notwordchar);
+              break;
+
+
+            case '<':
+	      if (re_syntax_options & RE_NO_GNU_OPS)
+		goto normal_char;
+              BUF_PUSH (wordbeg);
+              break;
+
+            case '>':
+	      if (re_syntax_options & RE_NO_GNU_OPS)
+		goto normal_char;
+              BUF_PUSH (wordend);
+              break;
+
+            case 'b':
+	      if (re_syntax_options & RE_NO_GNU_OPS)
+		goto normal_char;
+              BUF_PUSH (wordbound);
+              break;
+
+            case 'B':
+	      if (re_syntax_options & RE_NO_GNU_OPS)
+		goto normal_char;
+              BUF_PUSH (notwordbound);
+              break;
+
+            case '`':
+	      if (re_syntax_options & RE_NO_GNU_OPS)
+		goto normal_char;
+              BUF_PUSH (begbuf);
+              break;
+
+            case '\'':
+	      if (re_syntax_options & RE_NO_GNU_OPS)
+		goto normal_char;
+              BUF_PUSH (endbuf);
+              break;
+
+            case '1': case '2': case '3': case '4': case '5':
+            case '6': case '7': case '8': case '9':
+              if (syntax & RE_NO_BK_REFS)
+                goto normal_char;
+
+              c1 = c - '0';
+
+              if (c1 > regnum)
+                FREE_STACK_RETURN (REG_ESUBREG);
+
+              /* Can't back reference to a subexpression if inside of it.  */
+              if (group_in_compile_stack (compile_stack, (regnum_t) c1))
+                goto normal_char;
+
+              laststart = b;
+              BUF_PUSH_2 (duplicate, c1);
+              break;
+
+
+            case '+':
+            case '?':
+              if (syntax & RE_BK_PLUS_QM)
+                goto handle_plus;
+              else
+                goto normal_backslash;
+
+            default:
+            normal_backslash:
+              /* You might think it would be useful for \ to mean
+                 not to translate; but if we don't translate it
+                 it will never match anything.  */
+              c = TRANSLATE (c);
+              goto normal_char;
+            }
+          break;
+
+
+	default:
+        /* Expects the character in `c'.  */
+	normal_char:
+	      /* If no exactn currently being built.  */
+          if (!pending_exact
+
+              /* If last exactn not at current position.  */
+              || pending_exact + *pending_exact + 1 != b
+
+              /* We have only one byte following the exactn for the count.  */
+	      || *pending_exact == (1 << BYTEWIDTH) - 1
+
+              /* If followed by a repetition operator.  */
+              || *p == '*' || *p == '^'
+	      || ((syntax & RE_BK_PLUS_QM)
+		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
+		  : (*p == '+' || *p == '?'))
+	      || ((syntax & RE_INTERVALS)
+                  && ((syntax & RE_NO_BK_BRACES)
+		      ? *p == '{'
+                      : (p[0] == '\\' && p[1] == '{'))))
+	    {
+	      /* Start building a new exactn.  */
+
+              laststart = b;
+
+	      BUF_PUSH_2 (exactn, 0);
+	      pending_exact = b - 1;
+            }
+
+	  BUF_PUSH (c);
+          (*pending_exact)++;
+	  break;
+        } /* switch (c) */
+    } /* while p != pend */
+
+
+  /* Through the pattern now.  */
+
+  if (fixup_alt_jump)
+    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
+
+  if (!COMPILE_STACK_EMPTY)
+    FREE_STACK_RETURN (REG_EPAREN);
+
+  /* If we don't want backtracking, force success
+     the first time we reach the end of the compiled pattern.  */
+  if (syntax & RE_NO_POSIX_BACKTRACKING)
+    BUF_PUSH (succeed);
+
+  free (compile_stack.stack);
+
+  /* We have succeeded; set the length of the buffer.  */
+  bufp->used = b - bufp->buffer;
+
+#ifdef DEBUG
+  if (debug)
+    {
+      DEBUG_PRINT1 ("\nCompiled pattern: \n");
+      print_compiled_pattern (bufp);
+    }
+#endif /* DEBUG */
+
+#ifndef MATCH_MAY_ALLOCATE
+  /* Initialize the failure stack to the largest possible stack.  This
+     isn't necessary unless we're trying to avoid calling alloca in
+     the search and match routines.  */
+  {
+    int num_regs = bufp->re_nsub + 1;
+
+    /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
+       is strictly greater than re_max_failures, the largest possible stack
+       is 2 * re_max_failures failure points.  */
+    if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
+      {
+	fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
+
+#ifdef emacs
+	if (! fail_stack.stack)
+	  fail_stack.stack
+	    = (fail_stack_elt_t *) xmalloc (fail_stack.size
+					    * sizeof (fail_stack_elt_t));
+	else
+	  fail_stack.stack
+	    = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
+					     (fail_stack.size
+					      * sizeof (fail_stack_elt_t)));
+#else /* not emacs */
+	if (! fail_stack.stack)
+	  fail_stack.stack
+	    = (fail_stack_elt_t *) malloc (fail_stack.size
+					   * sizeof (fail_stack_elt_t));
+	else
+	  fail_stack.stack
+	    = (fail_stack_elt_t *) realloc (fail_stack.stack,
+					    (fail_stack.size
+					     * sizeof (fail_stack_elt_t)));
+#endif /* not emacs */
+      }
+
+    regex_grow_registers (num_regs);
+  }
+#endif /* not MATCH_MAY_ALLOCATE */
+
+  return REG_NOERROR;
+} /* regex_compile */
+
+/* Subroutines for `regex_compile'.  */
+
+/* Store OP at LOC followed by two-byte integer parameter ARG.  */
+
+static void
+store_op1 (op, loc, arg)
+    re_opcode_t op;
+    unsigned char *loc;
+    int arg;
+{
+  *loc = (unsigned char) op;
+  STORE_NUMBER (loc + 1, arg);
+}
+
+
+/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
+
+static void
+store_op2 (op, loc, arg1, arg2)
+    re_opcode_t op;
+    unsigned char *loc;
+    int arg1, arg2;
+{
+  *loc = (unsigned char) op;
+  STORE_NUMBER (loc + 1, arg1);
+  STORE_NUMBER (loc + 3, arg2);
+}
+
+
+/* Copy the bytes from LOC to END to open up three bytes of space at LOC
+   for OP followed by two-byte integer parameter ARG.  */
+
+static void
+insert_op1 (op, loc, arg, end)
+    re_opcode_t op;
+    unsigned char *loc;
+    int arg;
+    unsigned char *end;
+{
+  register unsigned char *pfrom = end;
+  register unsigned char *pto = end + 3;
+
+  while (pfrom != loc)
+    *--pto = *--pfrom;
+
+  store_op1 (op, loc, arg);
+}
+
+
+/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
+
+static void
+insert_op2 (op, loc, arg1, arg2, end)
+    re_opcode_t op;
+    unsigned char *loc;
+    int arg1, arg2;
+    unsigned char *end;
+{
+  register unsigned char *pfrom = end;
+  register unsigned char *pto = end + 5;
+
+  while (pfrom != loc)
+    *--pto = *--pfrom;
+
+  store_op2 (op, loc, arg1, arg2);
+}
+
+
+/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
+   after an alternative or a begin-subexpression.  We assume there is at
+   least one character before the ^.  */
+
+static boolean
+at_begline_loc_p (pattern, p, syntax)
+    const char *pattern, *p;
+    reg_syntax_t syntax;
+{
+  const char *prev = p - 2;
+  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
+
+  return
+       /* After a subexpression?  */
+       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
+       /* After an alternative?  */
+    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
+}
+
+
+/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
+   at least one character after the $, i.e., `P < PEND'.  */
+
+static boolean
+at_endline_loc_p (p, pend, syntax)
+    const char *p, *pend;
+    reg_syntax_t syntax;
+{
+  const char *next = p;
+  boolean next_backslash = *next == '\\';
+  const char *next_next = p + 1 < pend ? p + 1 : 0;
+
+  return
+       /* Before a subexpression?  */
+       (syntax & RE_NO_BK_PARENS ? *next == ')'
+        : next_backslash && next_next && *next_next == ')')
+       /* Before an alternative?  */
+    || (syntax & RE_NO_BK_VBAR ? *next == '|'
+        : next_backslash && next_next && *next_next == '|');
+}
+
+
+/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
+   false if it's not.  */
+
+static boolean
+group_in_compile_stack (compile_stack, regnum)
+    compile_stack_type compile_stack;
+    regnum_t regnum;
+{
+  int this_element;
+
+  for (this_element = compile_stack.avail - 1;
+       this_element >= 0;
+       this_element--)
+    if (compile_stack.stack[this_element].regnum == regnum)
+      return true;
+
+  return false;
+}
+
+
+/* Read the ending character of a range (in a bracket expression) from the
+   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
+   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
+   Then we set the translation of all bits between the starting and
+   ending characters (inclusive) in the compiled pattern B.
+
+   Return an error code.
+
+   We use these short variable names so we can use the same macros as
+   `regex_compile' itself.  */
+
+static reg_errcode_t
+compile_range (p_ptr, pend, translate, syntax, b)
+    const char **p_ptr, *pend;
+    RE_TRANSLATE_TYPE translate;
+    reg_syntax_t syntax;
+    unsigned char *b;
+{
+  unsigned this_char;
+
+  const char *p = *p_ptr;
+  unsigned int range_start, range_end;
+
+  if (p == pend)
+    return REG_ERANGE;
+
+  /* Even though the pattern is a signed `char *', we need to fetch
+     with unsigned char *'s; if the high bit of the pattern character
+     is set, the range endpoints will be negative if we fetch using a
+     signed char *.
+
+     We also want to fetch the endpoints without translating them; the
+     appropriate translation is done in the bit-setting loop below.  */
+  /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *.  */
+  range_start = ((const unsigned char *) p)[-2];
+  range_end   = ((const unsigned char *) p)[0];
+
+  /* Have to increment the pointer into the pattern string, so the
+     caller isn't still at the ending character.  */
+  (*p_ptr)++;
+
+  /* If the start is after the end, the range is empty.  */
+  if (range_start > range_end)
+    return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
+
+  /* Here we see why `this_char' has to be larger than an `unsigned
+     char' -- the range is inclusive, so if `range_end' == 0xff
+     (assuming 8-bit characters), we would otherwise go into an infinite
+     loop, since all characters <= 0xff.  */
+  for (this_char = range_start; this_char <= range_end; this_char++)
+    {
+      SET_LIST_BIT (TRANSLATE (this_char));
+    }
+
+  return REG_NOERROR;
+}
+
+/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
+   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
+   characters can start a string that matches the pattern.  This fastmap
+   is used by re_search to skip quickly over impossible starting points.
+
+   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
+   area as BUFP->fastmap.
+
+   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
+   the pattern buffer.
+
+   Returns 0 if we succeed, -2 if an internal error.   */
+
+int
+re_compile_fastmap (bufp)
+     struct re_pattern_buffer *bufp;
+{
+  int j, k;
+#ifdef MATCH_MAY_ALLOCATE
+  fail_stack_type fail_stack;
+#endif
+#ifndef REGEX_MALLOC
+  char *destination;
+#endif
+  /* We don't push any register information onto the failure stack.  */
+//sword  unsigned num_regs = 0;
+
+  register char *fastmap = bufp->fastmap;
+  unsigned char *pattern = bufp->buffer;
+  unsigned char *p = pattern;
+  register unsigned char *pend = pattern + bufp->used;
+
+#ifdef REL_ALLOC
+  /* This holds the pointer to the failure stack, when
+     it is allocated relocatably.  */
+  fail_stack_elt_t *failure_stack_ptr;
+#endif
+
+  /* Assume that each path through the pattern can be null until
+     proven otherwise.  We set this false at the bottom of switch
+     statement, to which we get only if a particular path doesn't
+     match the empty string.  */
+  boolean path_can_be_null = true;
+
+  /* We aren't doing a `succeed_n' to begin with.  */
+  boolean succeed_n_p = false;
+
+  assert (fastmap != NULL && p != NULL);
+
+  INIT_FAIL_STACK ();
+  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
+  bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
+  bufp->can_be_null = 0;
+
+  while (1)
+    {
+      if (p == pend || *p == succeed)
+	{
+	  /* We have reached the (effective) end of pattern.  */
+	  if (!FAIL_STACK_EMPTY ())
+	    {
+	      bufp->can_be_null |= path_can_be_null;
+
+	      /* Reset for next path.  */
+	      path_can_be_null = true;
+
+	      p = fail_stack.stack[--fail_stack.avail].pointer;
+
+	      continue;
+	    }
+	  else
+	    break;
+	}
+
+      /* We should never be about to go beyond the end of the pattern.  */
+      assert (p < pend);
+
+      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
+	{
+
+        /* I guess the idea here is to simply not bother with a fastmap
+           if a backreference is used, since it's too hard to figure out
+           the fastmap for the corresponding group.  Setting
+           `can_be_null' stops `re_search_2' from using the fastmap, so
+           that is all we do.  */
+	case duplicate:
+	  bufp->can_be_null = 1;
+          goto done;
+
+
+      /* Following are the cases which match a character.  These end
+         with `break'.  */
+
+	case exactn:
+          fastmap[p[1]] = 1;
+	  break;
+
+
+        case charset:
+          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
+	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
+              fastmap[j] = 1;
+	  break;
+
+
+	case charset_not:
+	  /* Chars beyond end of map must be allowed.  */
+	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
+            fastmap[j] = 1;
+
+	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
+	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
+              fastmap[j] = 1;
+          break;
+
+
+	case wordchar:
+	  for (j = 0; j < (1 << BYTEWIDTH); j++)
+	    if (SYNTAX (j) == Sword)
+	      fastmap[j] = 1;
+	  break;
+
+
+	case notwordchar:
+	  for (j = 0; j < (1 << BYTEWIDTH); j++)
+	    if (SYNTAX (j) != Sword)
+	      fastmap[j] = 1;
+	  break;
+
+
+        case anychar:
+	  {
+	    int fastmap_newline = fastmap['\n'];
+
+	    /* `.' matches anything ...  */
+	    for (j = 0; j < (1 << BYTEWIDTH); j++)
+	      fastmap[j] = 1;
+
+	    /* ... except perhaps newline.  */
+	    if (!(bufp->syntax & RE_DOT_NEWLINE))
+	      fastmap['\n'] = fastmap_newline;
+
+	    /* Return if we have already set `can_be_null'; if we have,
+	       then the fastmap is irrelevant.  Something's wrong here.  */
+	    else if (bufp->can_be_null)
+	      goto done;
+
+	    /* Otherwise, have to check alternative paths.  */
+	    break;
+	  }
+
+#ifdef emacs
+        case syntaxspec:
+	  k = *p++;
+	  for (j = 0; j < (1 << BYTEWIDTH); j++)
+	    if (SYNTAX (j) == (enum syntaxcode) k)
+	      fastmap[j] = 1;
+	  break;
+
+
+	case notsyntaxspec:
+	  k = *p++;
+	  for (j = 0; j < (1 << BYTEWIDTH); j++)
+	    if (SYNTAX (j) != (enum syntaxcode) k)
+	      fastmap[j] = 1;
+	  break;
+
+
+      /* All cases after this match the empty string.  These end with
+         `continue'.  */
+
+
+	case before_dot:
+	case at_dot:
+	case after_dot:
+          continue;
+#endif /* emacs */
+
+
+        case no_op:
+        case begline:
+        case endline:
+	case begbuf:
+	case endbuf:
+	case wordbound:
+	case notwordbound:
+	case wordbeg:
+	case wordend:
+        case push_dummy_failure:
+          continue;
+
+
+	case jump_n:
+        case pop_failure_jump:
+	case maybe_pop_jump:
+	case jump:
+        case jump_past_alt:
+	case dummy_failure_jump:
+          EXTRACT_NUMBER_AND_INCR (j, p);
+	  p += j;
+	  if (j > 0)
+	    continue;
+
+          /* Jump backward implies we just went through the body of a
+             loop and matched nothing.  Opcode jumped to should be
+             `on_failure_jump' or `succeed_n'.  Just treat it like an
+             ordinary jump.  For a * loop, it has pushed its failure
+             point already; if so, discard that as redundant.  */
+          if ((re_opcode_t) *p != on_failure_jump
+	      && (re_opcode_t) *p != succeed_n)
+	    continue;
+
+          p++;
+          EXTRACT_NUMBER_AND_INCR (j, p);
+          p += j;
+
+          /* If what's on the stack is where we are now, pop it.  */
+          if (!FAIL_STACK_EMPTY ()
+	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
+            fail_stack.avail--;
+
+          continue;
+
+
+        case on_failure_jump:
+        case on_failure_keep_string_jump:
+	handle_on_failure_jump:
+          EXTRACT_NUMBER_AND_INCR (j, p);
+
+          /* For some patterns, e.g., `(a?)?', `p+j' here points to the
+             end of the pattern.  We don't want to push such a point,
+             since when we restore it above, entering the switch will
+             increment `p' past the end of the pattern.  We don't need
+             to push such a point since we obviously won't find any more
+             fastmap entries beyond `pend'.  Such a pattern can match
+             the null string, though.  */
+          if (p + j < pend)
+            {
+              if (!PUSH_PATTERN_OP (p + j, fail_stack))
+		{
+		  RESET_FAIL_STACK ();
+		  return -2;
+		}
+            }
+          else
+            bufp->can_be_null = 1;
+
+          if (succeed_n_p)
+            {
+              EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
+              succeed_n_p = false;
+	    }
+
+          continue;
+
+
+	case succeed_n:
+          /* Get to the number of times to succeed.  */
+          p += 2;
+
+          /* Increment p past the n for when k != 0.  */
+          EXTRACT_NUMBER_AND_INCR (k, p);
+          if (k == 0)
+	    {
+              p -= 4;
+  	      succeed_n_p = true;  /* Spaghetti code alert.  */
+              goto handle_on_failure_jump;
+            }
+          continue;
+
+
+	case set_number_at:
+          p += 4;
+          continue;
+
+
+	case start_memory:
+        case stop_memory:
+	  p += 2;
+	  continue;
+
+
+	default:
+          abort (); /* We have listed all the cases.  */
+        } /* switch *p++ */
+
+      /* Getting here means we have found the possible starting
+         characters for one path of the pattern -- and that the empty
+         string does not match.  We need not follow this path further.
+         Instead, look at the next alternative (remembered on the
+         stack), or quit if no more.  The test at the top of the loop
+         does these things.  */
+      path_can_be_null = false;
+      p = pend;
+    } /* while p */
+
+  /* Set `can_be_null' for the last path (also the first path, if the
+     pattern is empty).  */
+  bufp->can_be_null |= path_can_be_null;
+
+ done:
+  RESET_FAIL_STACK ();
+  return 0;
+} /* re_compile_fastmap */
+
+/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
+   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
+   this memory for recording register information.  STARTS and ENDS
+   must be allocated using the malloc library routine, and must each
+   be at least NUM_REGS * sizeof (regoff_t) bytes long.
+
+   If NUM_REGS == 0, then subsequent matches should allocate their own
+   register data.
+
+   Unless this function is called, the first search or match using
+   PATTERN_BUFFER will allocate its own register data, without
+   freeing the old data.  */
+
+void
+re_set_registers (bufp, regs, num_regs, starts, ends)
+    struct re_pattern_buffer *bufp;
+    struct re_registers *regs;
+    unsigned num_regs;
+    regoff_t *starts, *ends;
+{
+  if (num_regs)
+    {
+      bufp->regs_allocated = REGS_REALLOCATE;
+      regs->num_regs = num_regs;
+      regs->start = starts;
+      regs->end = ends;
+    }
+  else
+    {
+      bufp->regs_allocated = REGS_UNALLOCATED;
+      regs->num_regs = 0;
+      regs->start = regs->end = (regoff_t *) 0;
+    }
+}
+
+/* Searching routines.  */
+
+/* Like re_search_2, below, but only one string is specified, and
+   doesn't let you say where to stop matching. */
+
+int
+re_search (bufp, string, size, startpos, range, regs)
+     struct re_pattern_buffer *bufp;
+     const char *string;
+     int size, startpos, range;
+     struct re_registers *regs;
+{
+  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
+		      regs, size);
+}
+
+
+/* Using the compiled pattern in BUFP->buffer, first tries to match the
+   virtual concatenation of STRING1 and STRING2, starting first at index
+   STARTPOS, then at STARTPOS + 1, and so on.
+
+   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
+
+   RANGE is how far to scan while trying to match.  RANGE = 0 means try
+   only at STARTPOS; in general, the last start tried is STARTPOS +
+   RANGE.
+
+   In REGS, return the indices of the virtual concatenation of STRING1
+   and STRING2 that matched the entire BUFP->buffer and its contained
+   subexpressions.
+
+   Do not consider matching one past the index STOP in the virtual
+   concatenation of STRING1 and STRING2.
+
+   We return either the position in the strings at which the match was
+   found, -1 if no match, or -2 if error (such as failure
+   stack overflow).  */
+
+int
+re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
+     struct re_pattern_buffer *bufp;
+     const char *string1, *string2;
+     int size1, size2;
+     int startpos;
+     int range;
+     struct re_registers *regs;
+     int stop;
+{
+  int val;
+  register char *fastmap = bufp->fastmap;
+  register RE_TRANSLATE_TYPE translate = bufp->translate;
+  int total_size = size1 + size2;
+  int endpos = startpos + range;
+
+  /* Check for out-of-range STARTPOS.  */
+  if (startpos < 0 || startpos > total_size)
+    return -1;
+
+  /* Fix up RANGE if it might eventually take us outside
+     the virtual concatenation of STRING1 and STRING2.
+     Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
+  if (endpos < 0)
+    range = 0 - startpos;
+  else if (endpos > total_size)
+    range = total_size - startpos;
+
+  /* If the search isn't to be a backwards one, don't waste time in a
+     search for a pattern that must be anchored.  */
+  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
+    {
+      if (startpos > 0)
+	return -1;
+      else
+	range = 1;
+    }
+
+#ifdef emacs
+  /* In a forward search for something that starts with \=.
+     don't keep searching past point.  */
+  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
+    {
+      range = PT - startpos;
+      if (range <= 0)
+	return -1;
+    }
+#endif /* emacs */
+
+  /* Update the fastmap now if not correct already.  */
+  if (fastmap && !bufp->fastmap_accurate)
+    if (re_compile_fastmap (bufp) == -2)
+      return -2;
+
+  /* Loop through the string, looking for a place to start matching.  */
+  for (;;)
+    {
+      /* If a fastmap is supplied, skip quickly over characters that
+         cannot be the start of a match.  If the pattern can match the
+         null string, however, we don't need to skip characters; we want
+         the first null string.  */
+      if (fastmap && startpos < total_size && !bufp->can_be_null)
+	{
+	  if (range > 0)	/* Searching forwards.  */
+	    {
+	      register const char *d;
+	      register int lim = 0;
+	      int irange = range;
+
+              if (startpos < size1 && startpos + range >= size1)
+                lim = range - (size1 - startpos);
+
+	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
+
+              /* Written out as an if-else to avoid testing `translate'
+                 inside the loop.  */
+	      if (translate)
+                while (range > lim
+                       && !fastmap[(unsigned char)
+				   translate[(unsigned char) *d++]])
+                  range--;
+	      else
+                while (range > lim && !fastmap[(unsigned char) *d++])
+                  range--;
+
+	      startpos += irange - range;
+	    }
+	  else				/* Searching backwards.  */
+	    {
+	      register char c = (size1 == 0 || startpos >= size1
+                                 ? string2[startpos - size1]
+                                 : string1[startpos]);
+
+	      if (!fastmap[(unsigned char) TRANSLATE (c)])
+		goto advance;
+	    }
+	}
+
+      /* If can't match the null string, and that's all we have left, fail.  */
+      if (range >= 0 && startpos == total_size && fastmap
+          && !bufp->can_be_null)
+	return -1;
+
+      val = re_match_2_internal (bufp, string1, size1, string2, size2,
+				 startpos, regs, stop);
+#ifndef REGEX_MALLOC
+#ifdef C_ALLOCA
+      alloca (0);
+#endif
+#endif
+
+      if (val >= 0)
+	return startpos;
+
+      if (val == -2)
+	return -2;
+
+    advance:
+      if (!range)
+        break;
+      else if (range > 0)
+        {
+          range--;
+          startpos++;
+        }
+      else
+        {
+          range++;
+          startpos--;
+        }
+    }
+  return -1;
+} /* re_search_2 */
+
+/* This converts PTR, a pointer into one of the search strings `string1'
+   and `string2' into an offset from the beginning of that string.  */
+#define POINTER_TO_OFFSET(ptr)			\
+  (FIRST_STRING_P (ptr)				\
+   ? ((regoff_t) ((ptr) - string1))		\
+   : ((regoff_t) ((ptr) - string2 + size1)))
+
+/* Macros for dealing with the split strings in re_match_2.  */
+
+#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
+
+/* Call before fetching a character with *d.  This switches over to
+   string2 if necessary.  */
+#define PREFETCH()							\
+  while (d == dend)						    	\
+    {									\
+      /* End of string2 => fail.  */					\
+      if (dend == end_match_2) 						\
+        goto fail;							\
+      /* End of string1 => advance to string2.  */ 			\
+      d = string2;						        \
+      dend = end_match_2;						\
+    }
+
+
+/* Test if at very beginning or at very end of the virtual concatenation
+   of `string1' and `string2'.  If only one string, it's `string2'.  */
+#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
+#define AT_STRINGS_END(d) ((d) == end2)
+
+
+/* Test if D points to a character which is word-constituent.  We have
+   two special cases to check for: if past the end of string1, look at
+   the first character in string2; and if before the beginning of
+   string2, look at the last character in string1.  */
+#define WORDCHAR_P(d)							\
+  (SYNTAX ((d) == end1 ? *string2					\
+           : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
+   == Sword)
+
+/* Disabled due to a compiler bug -- see comment at case wordbound */
+#if 0
+/* Test if the character before D and the one at D differ with respect
+   to being word-constituent.  */
+#define AT_WORD_BOUNDARY(d)						\
+  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
+   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
+#endif
+
+/* Free everything we malloc.  */
+#ifdef MATCH_MAY_ALLOCATE
+#define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
+#define FREE_VARIABLES()						\
+  do {									\
+    REGEX_FREE_STACK (fail_stack.stack);				\
+    FREE_VAR (regstart);						\
+    FREE_VAR (regend);							\
+    FREE_VAR (old_regstart);						\
+    FREE_VAR (old_regend);						\
+    FREE_VAR (best_regstart);						\
+    FREE_VAR (best_regend);						\
+    FREE_VAR (reg_info);						\
+    FREE_VAR (reg_dummy);						\
+    FREE_VAR (reg_info_dummy);						\
+  } while (0)
+#else
+#define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning.  */
+#endif /* not MATCH_MAY_ALLOCATE */
+
+/* These values must meet several constraints.  They must not be valid
+   register values; since we have a limit of 255 registers (because
+   we use only one byte in the pattern for the register number), we can
+   use numbers larger than 255.  They must differ by 1, because of
+   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
+   be larger than the value for the highest register, so we do not try
+   to actually save any registers when none are active.  */
+#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
+#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
+
+/* Matching routines.  */
+
+#ifndef emacs   /* Emacs never uses this.  */
+/* re_match is like re_match_2 except it takes only a single string.  */
+
+int
+re_match (bufp, string, size, pos, regs)
+     struct re_pattern_buffer *bufp;
+     const char *string;
+     int size, pos;
+     struct re_registers *regs;
+{
+  int result = re_match_2_internal (bufp, NULL, 0, string, size,
+				    pos, regs, size);
+#ifndef REGEX_MALLOC
+#ifdef C_ALLOCA
+  alloca (0);
+#endif
+#endif
+  return result;
+}
+#endif /* not emacs */
+
+static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
+						    unsigned char *end,
+						register_info_type *reg_info));
+static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
+						  unsigned char *end,
+						register_info_type *reg_info));
+static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
+							unsigned char *end,
+						register_info_type *reg_info));
+static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
+				     int len, char *translate));
+
+/* re_match_2 matches the compiled pattern in BUFP against the
+   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
+   and SIZE2, respectively).  We start matching at POS, and stop
+   matching at STOP.
+
+   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
+   store offsets for the substring each group matched in REGS.  See the
+   documentation for exactly how many groups we fill.
+
+   We return -1 if no match, -2 if an internal error (such as the
+   failure stack overflowing).  Otherwise, we return the length of the
+   matched substring.  */
+
+int
+re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
+     struct re_pattern_buffer *bufp;
+     const char *string1, *string2;
+     int size1, size2;
+     int pos;
+     struct re_registers *regs;
+     int stop;
+{
+  int result = re_match_2_internal (bufp, string1, size1, string2, size2,
+				    pos, regs, stop);
+#ifndef REGEX_MALLOC
+#ifdef C_ALLOCA
+  alloca (0);
+#endif
+#endif
+  return result;
+}
+
+/* This is a separate function so that we can force an alloca cleanup
+   afterwards.  */
+static int
+re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
+     struct re_pattern_buffer *bufp;
+     const char *string1, *string2;
+     int size1, size2;
+     int pos;
+     struct re_registers *regs;
+     int stop;
+{
+  /* General temporaries.  */
+  int mcnt;
+  unsigned char *p1;
+
+  /* Just past the end of the corresponding string.  */
+  const char *end1, *end2;
+
+  /* Pointers into string1 and string2, just past the last characters in
+     each to consider matching.  */
+  const char *end_match_1, *end_match_2;
+
+  /* Where we are in the data, and the end of the current string.  */
+  const char *d, *dend;
+
+  /* Where we are in the pattern, and the end of the pattern.  */
+  unsigned char *p = bufp->buffer;
+  register unsigned char *pend = p + bufp->used;
+
+  /* Mark the opcode just after a start_memory, so we can test for an
+     empty subpattern when we get to the stop_memory.  */
+  unsigned char *just_past_start_mem = 0;
+
+  /* We use this to map every character in the string.  */
+  RE_TRANSLATE_TYPE translate = bufp->translate;
+
+  /* Failure point stack.  Each place that can handle a failure further
+     down the line pushes a failure point on this stack.  It consists of
+     restart, regend, and reg_info for all registers corresponding to
+     the subexpressions we're currently inside, plus the number of such
+     registers, and, finally, two char *'s.  The first char * is where
+     to resume scanning the pattern; the second one is where to resume
+     scanning the strings.  If the latter is zero, the failure point is
+     a ``dummy''; if a failure happens and the failure point is a dummy,
+     it gets discarded and the next next one is tried.  */
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
+  fail_stack_type fail_stack;
+#endif
+#ifdef DEBUG
+  static unsigned failure_id = 0;
+  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
+#endif
+
+#ifdef REL_ALLOC
+  /* This holds the pointer to the failure stack, when
+     it is allocated relocatably.  */
+  fail_stack_elt_t *failure_stack_ptr;
+#endif
+
+  /* We fill all the registers internally, independent of what we
+     return, for use in backreferences.  The number here includes
+     an element for register zero.  */
+  size_t num_regs = bufp->re_nsub + 1;
+
+  /* The currently active registers.  */
+  active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+  active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+
+  /* Information on the contents of registers. These are pointers into
+     the input strings; they record just what was matched (on this
+     attempt) by a subexpression part of the pattern, that is, the
+     regnum-th regstart pointer points to where in the pattern we began
+     matching and the regnum-th regend points to right after where we
+     stopped matching the regnum-th subexpression.  (The zeroth register
+     keeps track of what the whole pattern matches.)  */
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
+  const char **regstart, **regend;
+#endif
+
+  /* If a group that's operated upon by a repetition operator fails to
+     match anything, then the register for its start will need to be
+     restored because it will have been set to wherever in the string we
+     are when we last see its open-group operator.  Similarly for a
+     register's end.  */
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
+  const char **old_regstart, **old_regend;
+#endif
+
+  /* The is_active field of reg_info helps us keep track of which (possibly
+     nested) subexpressions we are currently in. The matched_something
+     field of reg_info[reg_num] helps us tell whether or not we have
+     matched any of the pattern so far this time through the reg_num-th
+     subexpression.  These two fields get reset each time through any
+     loop their register is in.  */
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
+  register_info_type *reg_info;
+#endif
+
+  /* The following record the register info as found in the above
+     variables when we find a match better than any we've seen before.
+     This happens as we backtrack through the failure points, which in
+     turn happens only if we have not yet matched the entire string. */
+  unsigned best_regs_set = false;
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
+  const char **best_regstart, **best_regend;
+#endif
+
+  /* Logically, this is `best_regend[0]'.  But we don't want to have to
+     allocate space for that if we're not allocating space for anything
+     else (see below).  Also, we never need info about register 0 for
+     any of the other register vectors, and it seems rather a kludge to
+     treat `best_regend' differently than the rest.  So we keep track of
+     the end of the best match so far in a separate variable.  We
+     initialize this to NULL so that when we backtrack the first time
+     and need to test it, it's not garbage.  */
+  const char *match_end = NULL;
+
+  /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
+  int set_regs_matched_done = 0;
+
+  /* Used when we pop values we don't care about.  */
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
+  const char **reg_dummy;
+  register_info_type *reg_info_dummy;
+#endif
+
+#ifdef DEBUG
+  /* Counts the total number of registers pushed.  */
+  unsigned num_regs_pushed = 0;
+#endif
+
+  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
+
+  INIT_FAIL_STACK ();
+
+#ifdef MATCH_MAY_ALLOCATE
+  /* Do not bother to initialize all the register variables if there are
+     no groups in the pattern, as it takes a fair amount of time.  If
+     there are groups, we include space for register 0 (the whole
+     pattern), even though we never use it, since it simplifies the
+     array indexing.  We should fix this.  */
+  if (bufp->re_nsub)
+    {
+      regstart = REGEX_TALLOC (num_regs, const char *);
+      regend = REGEX_TALLOC (num_regs, const char *);
+      old_regstart = REGEX_TALLOC (num_regs, const char *);
+      old_regend = REGEX_TALLOC (num_regs, const char *);
+      best_regstart = REGEX_TALLOC (num_regs, const char *);
+      best_regend = REGEX_TALLOC (num_regs, const char *);
+      reg_info = REGEX_TALLOC (num_regs, register_info_type);
+      reg_dummy = REGEX_TALLOC (num_regs, const char *);
+      reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
+
+      if (!(regstart && regend && old_regstart && old_regend && reg_info
+            && best_regstart && best_regend && reg_dummy && reg_info_dummy))
+        {
+          FREE_VARIABLES ();
+          return -2;
+        }
+    }
+  else
+    {
+      /* We must initialize all our variables to NULL, so that
+         `FREE_VARIABLES' doesn't try to free them.  */
+      regstart = regend = old_regstart = old_regend = best_regstart
+        = best_regend = reg_dummy = NULL;
+      reg_info = reg_info_dummy = (register_info_type *) NULL;
+    }
+#endif /* MATCH_MAY_ALLOCATE */
+
+  /* The starting position is bogus.  */
+  if (pos < 0 || pos > size1 + size2)
+    {
+      FREE_VARIABLES ();
+      return -1;
+    }
+
+  /* Initialize subexpression text positions to -1 to mark ones that no
+     start_memory/stop_memory has been seen for. Also initialize the
+     register information struct.  */
+  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
+    {
+      regstart[mcnt] = regend[mcnt]
+        = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
+
+      REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
+      IS_ACTIVE (reg_info[mcnt]) = 0;
+      MATCHED_SOMETHING (reg_info[mcnt]) = 0;
+      EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
+    }
+
+  /* We move `string1' into `string2' if the latter's empty -- but not if
+     `string1' is null.  */
+  if (size2 == 0 && string1 != NULL)
+    {
+      string2 = string1;
+      size2 = size1;
+      string1 = 0;
+      size1 = 0;
+    }
+  end1 = string1 + size1;
+  end2 = string2 + size2;
+
+  /* Compute where to stop matching, within the two strings.  */
+  if (stop <= size1)
+    {
+      end_match_1 = string1 + stop;
+      end_match_2 = string2;
+    }
+  else
+    {
+      end_match_1 = end1;
+      end_match_2 = string2 + stop - size1;
+    }
+
+  /* `p' scans through the pattern as `d' scans through the data.
+     `dend' is the end of the input string that `d' points within.  `d'
+     is advanced into the following input string whenever necessary, but
+     this happens before fetching; therefore, at the beginning of the
+     loop, `d' can be pointing at the end of a string, but it cannot
+     equal `string2'.  */
+  if (size1 > 0 && pos <= size1)
+    {
+      d = string1 + pos;
+      dend = end_match_1;
+    }
+  else
+    {
+      d = string2 + pos - size1;
+      dend = end_match_2;
+    }
+
+  DEBUG_PRINT1 ("The compiled pattern is:\n");
+  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
+  DEBUG_PRINT1 ("The string to match is: `");
+  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
+  DEBUG_PRINT1 ("'\n");
+
+  /* This loops over pattern commands.  It exits by returning from the
+     function if the match is complete, or it drops through if the match
+     fails at this starting point in the input data.  */
+  for (;;)
+    {
+#ifdef _LIBC
+      DEBUG_PRINT2 ("\n%p: ", p);
+#else
+      DEBUG_PRINT2 ("\n0x%x: ", p);
+#endif
+
+      if (p == pend)
+	{ /* End of pattern means we might have succeeded.  */
+          DEBUG_PRINT1 ("end of pattern ... ");
+
+	  /* If we haven't matched the entire string, and we want the
+             longest match, try backtracking.  */
+          if (d != end_match_2)
+	    {
+	      /* 1 if this match ends in the same string (string1 or string2)
+		 as the best previous match.  */
+	      boolean same_str_p = (FIRST_STRING_P (match_end)
+				    == MATCHING_IN_FIRST_STRING);
+	      /* 1 if this match is the best seen so far.  */
+	      boolean best_match_p;
+
+	      /* AIX compiler got confused when this was combined
+		 with the previous declaration.  */
+	      if (same_str_p)
+		best_match_p = d > match_end;
+	      else
+		best_match_p = !MATCHING_IN_FIRST_STRING;
+
+              DEBUG_PRINT1 ("backtracking.\n");
+
+              if (!FAIL_STACK_EMPTY ())
+                { /* More failure points to try.  */
+
+                  /* If exceeds best match so far, save it.  */
+                  if (!best_regs_set || best_match_p)
+                    {
+                      best_regs_set = true;
+                      match_end = d;
+
+                      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
+
+                      for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
+                        {
+                          best_regstart[mcnt] = regstart[mcnt];
+                          best_regend[mcnt] = regend[mcnt];
+                        }
+                    }
+                  goto fail;
+                }
+
+              /* If no failure points, don't restore garbage.  And if
+                 last match is real best match, don't restore second
+                 best one. */
+              else if (best_regs_set && !best_match_p)
+                {
+  	        restore_best_regs:
+                  /* Restore best match.  It may happen that `dend ==
+                     end_match_1' while the restored d is in string2.
+                     For example, the pattern `x.*y.*z' against the
+                     strings `x-' and `y-z-', if the two strings are
+                     not consecutive in memory.  */
+                  DEBUG_PRINT1 ("Restoring best registers.\n");
+
+                  d = match_end;
+                  dend = ((d >= string1 && d <= end1)
+		           ? end_match_1 : end_match_2);
+
+		  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
+		    {
+		      regstart[mcnt] = best_regstart[mcnt];
+		      regend[mcnt] = best_regend[mcnt];
+		    }
+                }
+            } /* d != end_match_2 */
+
+	succeed_label:
+          DEBUG_PRINT1 ("Accepting match.\n");
+
+          /* If caller wants register contents data back, do it.  */
+          if (regs && !bufp->no_sub)
+	    {
+              /* Have the register data arrays been allocated?  */
+              if (bufp->regs_allocated == REGS_UNALLOCATED)
+                { /* No.  So allocate them with malloc.  We need one
+                     extra element beyond `num_regs' for the `-1' marker
+                     GNU code uses.  */
+                  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
+                  regs->start = TALLOC (regs->num_regs, regoff_t);
+                  regs->end = TALLOC (regs->num_regs, regoff_t);
+                  if (regs->start == NULL || regs->end == NULL)
+		    {
+		      FREE_VARIABLES ();
+		      return -2;
+		    }
+                  bufp->regs_allocated = REGS_REALLOCATE;
+                }
+              else if (bufp->regs_allocated == REGS_REALLOCATE)
+                { /* Yes.  If we need more elements than were already
+                     allocated, reallocate them.  If we need fewer, just
+                     leave it alone.  */
+                  if (regs->num_regs < num_regs + 1)
+                    {
+                      regs->num_regs = num_regs + 1;
+                      RETALLOC (regs->start, regs->num_regs, regoff_t);
+                      RETALLOC (regs->end, regs->num_regs, regoff_t);
+                      if (regs->start == NULL || regs->end == NULL)
+			{
+			  FREE_VARIABLES ();
+			  return -2;
+			}
+                    }
+                }
+              else
+		{
+		  /* These braces fend off a "empty body in an else-statement"
+		     warning under GCC when assert expands to nothing.  */
+		  assert (bufp->regs_allocated == REGS_FIXED);
+		}
+
+              /* Convert the pointer data in `regstart' and `regend' to
+                 indices.  Register zero has to be set differently,
+                 since we haven't kept track of any info for it.  */
+              if (regs->num_regs > 0)
+                {
+                  regs->start[0] = pos;
+                  regs->end[0] = (MATCHING_IN_FIRST_STRING
+				  ? ((regoff_t) (d - string1))
+			          : ((regoff_t) (d - string2 + size1)));
+                }
+
+              /* Go through the first `min (num_regs, regs->num_regs)'
+                 registers, since that is all we initialized.  */
+	      for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
+		   mcnt++)
+		{
+                  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
+                    regs->start[mcnt] = regs->end[mcnt] = -1;
+                  else
+                    {
+		      regs->start[mcnt]
+			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
+                      regs->end[mcnt]
+			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
+                    }
+		}
+
+              /* If the regs structure we return has more elements than
+                 were in the pattern, set the extra elements to -1.  If
+                 we (re)allocated the registers, this is the case,
+                 because we always allocate enough to have at least one
+                 -1 at the end.  */
+              for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
+                regs->start[mcnt] = regs->end[mcnt] = -1;
+	    } /* regs && !bufp->no_sub */
+
+          DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
+                        nfailure_points_pushed, nfailure_points_popped,
+                        nfailure_points_pushed - nfailure_points_popped);
+          DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
+
+          mcnt = d - pos - (MATCHING_IN_FIRST_STRING
+			    ? string1
+			    : string2 - size1);
+
+          DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
+
+          FREE_VARIABLES ();
+          return mcnt;
+        }
+
+      /* Otherwise match next pattern command.  */
+      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
+	{
+        /* Ignore these.  Used to ignore the n of succeed_n's which
+           currently have n == 0.  */
+        case no_op:
+          DEBUG_PRINT1 ("EXECUTING no_op.\n");
+          break;
+
+	case succeed:
+          DEBUG_PRINT1 ("EXECUTING succeed.\n");
+	  goto succeed_label;
+
+        /* Match the next n pattern characters exactly.  The following
+           byte in the pattern defines n, and the n bytes after that
+           are the characters to match.  */
+	case exactn:
+	  mcnt = *p++;
+          DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
+
+          /* This is written out as an if-else so we don't waste time
+             testing `translate' inside the loop.  */
+          if (translate)
+	    {
+	      do
+		{
+		  PREFETCH ();
+		  if ((unsigned char) translate[(unsigned char) *d++]
+		      != (unsigned char) *p++)
+                    goto fail;
+		}
+	      while (--mcnt);
+	    }
+	  else
+	    {
+	      do
+		{
+		  PREFETCH ();
+		  if (*d++ != (char) *p++) goto fail;
+		}
+	      while (--mcnt);
+	    }
+	  SET_REGS_MATCHED ();
+          break;
+
+
+        /* Match any character except possibly a newline or a null.  */
+	case anychar:
+          DEBUG_PRINT1 ("EXECUTING anychar.\n");
+
+          PREFETCH ();
+
+          if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
+              || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
+	    goto fail;
+
+          SET_REGS_MATCHED ();
+          DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
+          d++;
+	  break;
+
+
+	case charset:
+	case charset_not:
+	  {
+	    register unsigned char c;
+	    boolean not = (re_opcode_t) *(p - 1) == charset_not;
+
+            DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
+
+	    PREFETCH ();
+	    c = TRANSLATE (*d); /* The character to match.  */
+
+            /* Cast to `unsigned' instead of `unsigned char' in case the
+               bit list is a full 32 bytes long.  */
+	    if (c < (unsigned) (*p * BYTEWIDTH)
+		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
+	      not = !not;
+
+	    p += 1 + *p;
+
+	    if (!not) goto fail;
+
+	    SET_REGS_MATCHED ();
+            d++;
+	    break;
+	  }
+
+
+        /* The beginning of a group is represented by start_memory.
+           The arguments are the register number in the next byte, and the
+           number of groups inner to this one in the next.  The text
+           matched within the group is recorded (in the internal
+           registers data structure) under the register number.  */
+        case start_memory:
+	  DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
+
+          /* Find out if this group can match the empty string.  */
+	  p1 = p;		/* To send to group_match_null_string_p.  */
+
+          if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
+            REG_MATCH_NULL_STRING_P (reg_info[*p])
+				  = group_match_null_string_p (&p1, pend, reg_info);
+
+          /* Save the position in the string where we were the last time
+             we were at this open-group operator in case the group is
+             operated upon by a repetition operator, e.g., with `(a*)*b'
+             against `ab'; then we want to ignore where we are now in
+             the string in case this attempt to match fails.  */
+          old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
+                             ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
+                             : regstart[*p];
+	  DEBUG_PRINT2 ("  old_regstart: %d\n",
+			 POINTER_TO_OFFSET (old_regstart[*p]));
+
+          regstart[*p] = d;
+	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
+
+          IS_ACTIVE (reg_info[*p]) = 1;
+          MATCHED_SOMETHING (reg_info[*p]) = 0;
+
+	  /* Clear this whenever we change the register activity status.  */
+	  set_regs_matched_done = 0;
+
+          /* This is the new highest active register.  */
+          highest_active_reg = *p;
+
+          /* If nothing was active before, this is the new lowest active
+             register.  */
+          if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
+            lowest_active_reg = *p;
+
+          /* Move past the register number and inner group count.  */
+          p += 2;
+	  just_past_start_mem = p;
+
+          break;
+
+
+        /* The stop_memory opcode represents the end of a group.  Its
+           arguments are the same as start_memory's: the register
+           number, and the number of inner groups.  */
+	case stop_memory:
+	  DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
+
+          /* We need to save the string position the last time we were at
+             this close-group operator in case the group is operated
+             upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
+             against `aba'; then we want to ignore where we are now in
+             the string in case this attempt to match fails.  */
+          old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
+                           ? REG_UNSET (regend[*p]) ? d : regend[*p]
+			   : regend[*p];
+	  DEBUG_PRINT2 ("      old_regend: %d\n",
+			 POINTER_TO_OFFSET (old_regend[*p]));
+
+          regend[*p] = d;
+	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
+
+          /* This register isn't active anymore.  */
+          IS_ACTIVE (reg_info[*p]) = 0;
+
+	  /* Clear this whenever we change the register activity status.  */
+	  set_regs_matched_done = 0;
+
+          /* If this was the only register active, nothing is active
+             anymore.  */
+          if (lowest_active_reg == highest_active_reg)
+            {
+              lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+              highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+            }
+          else
+            { /* We must scan for the new highest active register, since
+                 it isn't necessarily one less than now: consider
+                 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
+                 new highest active register is 1.  */
+              unsigned char r = *p - 1;
+              while (r > 0 && !IS_ACTIVE (reg_info[r]))
+                r--;
+
+              /* If we end up at register zero, that means that we saved
+                 the registers as the result of an `on_failure_jump', not
+                 a `start_memory', and we jumped to past the innermost
+                 `stop_memory'.  For example, in ((.)*) we save
+                 registers 1 and 2 as a result of the *, but when we pop
+                 back to the second ), we are at the stop_memory 1.
+                 Thus, nothing is active.  */
+	      if (r == 0)
+                {
+                  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+                  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+                }
+              else
+                highest_active_reg = r;
+            }
+
+          /* If just failed to match something this time around with a
+             group that's operated on by a repetition operator, try to
+             force exit from the ``loop'', and restore the register
+             information for this group that we had before trying this
+             last match.  */
+          if ((!MATCHED_SOMETHING (reg_info[*p])
+               || just_past_start_mem == p - 1)
+	      && (p + 2) < pend)
+            {
+              boolean is_a_jump_n = false;
+
+              p1 = p + 2;
+              mcnt = 0;
+              switch ((re_opcode_t) *p1++)
+                {
+                  case jump_n:
+		    is_a_jump_n = true;
+                  case pop_failure_jump:
+		  case maybe_pop_jump:
+		  case jump:
+		  case dummy_failure_jump:
+                    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+		    if (is_a_jump_n)
+		      p1 += 2;
+                    break;
+
+                  default:
+                    /* do nothing */ ;
+                }
+	      p1 += mcnt;
+
+              /* If the next operation is a jump backwards in the pattern
+	         to an on_failure_jump right before the start_memory
+                 corresponding to this stop_memory, exit from the loop
+                 by forcing a failure after pushing on the stack the
+                 on_failure_jump's jump in the pattern, and d.  */
+              if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
+                  && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
+		{
+                  /* If this group ever matched anything, then restore
+                     what its registers were before trying this last
+                     failed match, e.g., with `(a*)*b' against `ab' for
+                     regstart[1], and, e.g., with `((a*)*(b*)*)*'
+                     against `aba' for regend[3].
+
+                     Also restore the registers for inner groups for,
+                     e.g., `((a*)(b*))*' against `aba' (register 3 would
+                     otherwise get trashed).  */
+
+                  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
+		    {
+		      unsigned r;
+
+                      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
+
+		      /* Restore this and inner groups' (if any) registers.  */
+                      for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
+			   r++)
+                        {
+                          regstart[r] = old_regstart[r];
+
+                          /* xx why this test?  */
+                          if (old_regend[r] >= regstart[r])
+                            regend[r] = old_regend[r];
+                        }
+                    }
+		  p1++;
+                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+                  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
+
+                  goto fail;
+                }
+            }
+
+          /* Move past the register number and the inner group count.  */
+          p += 2;
+          break;
+
+
+	/* \<digit> has been turned into a `duplicate' command which is
+           followed by the numeric value of <digit> as the register number.  */
+        case duplicate:
+	  {
+	    register const char *d2, *dend2;
+	    int regno = *p++;   /* Get which register to match against.  */
+	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
+
+	    /* Can't back reference a group which we've never matched.  */
+            if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
+              goto fail;
+
+            /* Where in input to try to start matching.  */
+            d2 = regstart[regno];
+
+            /* Where to stop matching; if both the place to start and
+               the place to stop matching are in the same string, then
+               set to the place to stop, otherwise, for now have to use
+               the end of the first string.  */
+
+            dend2 = ((FIRST_STRING_P (regstart[regno])
+		      == FIRST_STRING_P (regend[regno]))
+		     ? regend[regno] : end_match_1);
+	    for (;;)
+	      {
+		/* If necessary, advance to next segment in register
+                   contents.  */
+		while (d2 == dend2)
+		  {
+		    if (dend2 == end_match_2) break;
+		    if (dend2 == regend[regno]) break;
+
+                    /* End of string1 => advance to string2. */
+                    d2 = string2;
+                    dend2 = regend[regno];
+		  }
+		/* At end of register contents => success */
+		if (d2 == dend2) break;
+
+		/* If necessary, advance to next segment in data.  */
+		PREFETCH ();
+
+		/* How many characters left in this segment to match.  */
+		mcnt = dend - d;
+
+		/* Want how many consecutive characters we can match in
+                   one shot, so, if necessary, adjust the count.  */
+                if (mcnt > dend2 - d2)
+		  mcnt = dend2 - d2;
+
+		/* Compare that many; failure if mismatch, else move
+                   past them.  */
+		if (translate
+                    ? bcmp_translate (d, d2, mcnt, translate)
+                    : bcmp (d, d2, mcnt))
+		  goto fail;
+		d += mcnt, d2 += mcnt;
+
+		/* Do this because we've match some characters.  */
+		SET_REGS_MATCHED ();
+	      }
+	  }
+	  break;
+
+
+        /* begline matches the empty string at the beginning of the string
+           (unless `not_bol' is set in `bufp'), and, if
+           `newline_anchor' is set, after newlines.  */
+	case begline:
+          DEBUG_PRINT1 ("EXECUTING begline.\n");
+
+          if (AT_STRINGS_BEG (d))
+            {
+              if (!bufp->not_bol) break;
+            }
+          else if (d[-1] == '\n' && bufp->newline_anchor)
+            {
+              break;
+            }
+          /* In all other cases, we fail.  */
+          goto fail;
+
+
+        /* endline is the dual of begline.  */
+	case endline:
+          DEBUG_PRINT1 ("EXECUTING endline.\n");
+
+          if (AT_STRINGS_END (d))
+            {
+              if (!bufp->not_eol) break;
+            }
+
+          /* We have to ``prefetch'' the next character.  */
+          else if ((d == end1 ? *string2 : *d) == '\n'
+                   && bufp->newline_anchor)
+            {
+              break;
+            }
+          goto fail;
+
+
+	/* Match at the very beginning of the data.  */
+        case begbuf:
+          DEBUG_PRINT1 ("EXECUTING begbuf.\n");
+          if (AT_STRINGS_BEG (d))
+            break;
+          goto fail;
+
+
+	/* Match at the very end of the data.  */
+        case endbuf:
+          DEBUG_PRINT1 ("EXECUTING endbuf.\n");
+	  if (AT_STRINGS_END (d))
+	    break;
+          goto fail;
+
+
+        /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
+           pushes NULL as the value for the string on the stack.  Then
+           `pop_failure_point' will keep the current value for the
+           string, instead of restoring it.  To see why, consider
+           matching `foo\nbar' against `.*\n'.  The .* matches the foo;
+           then the . fails against the \n.  But the next thing we want
+           to do is match the \n against the \n; if we restored the
+           string value, we would be back at the foo.
+
+           Because this is used only in specific cases, we don't need to
+           check all the things that `on_failure_jump' does, to make
+           sure the right things get saved on the stack.  Hence we don't
+           share its code.  The only reason to push anything on the
+           stack at all is that otherwise we would have to change
+           `anychar's code to do something besides goto fail in this
+           case; that seems worse than this.  */
+        case on_failure_keep_string_jump:
+          DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
+
+          EXTRACT_NUMBER_AND_INCR (mcnt, p);
+#ifdef _LIBC
+          DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
+#else
+          DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
+#endif
+
+          PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
+          break;
+
+
+	/* Uses of on_failure_jump:
+
+           Each alternative starts with an on_failure_jump that points
+           to the beginning of the next alternative.  Each alternative
+           except the last ends with a jump that in effect jumps past
+           the rest of the alternatives.  (They really jump to the
+           ending jump of the following alternative, because tensioning
+           these jumps is a hassle.)
+
+           Repeats start with an on_failure_jump that points past both
+           the repetition text and either the following jump or
+           pop_failure_jump back to this on_failure_jump.  */
+	case on_failure_jump:
+        on_failure:
+          DEBUG_PRINT1 ("EXECUTING on_failure_jump");
+
+          EXTRACT_NUMBER_AND_INCR (mcnt, p);
+#ifdef _LIBC
+          DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
+#else
+          DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
+#endif
+
+          /* If this on_failure_jump comes right before a group (i.e.,
+             the original * applied to a group), save the information
+             for that group and all inner ones, so that if we fail back
+             to this point, the group's information will be correct.
+             For example, in \(a*\)*\1, we need the preceding group,
+             and in \(zz\(a*\)b*\)\2, we need the inner group.  */
+
+          /* We can't use `p' to check ahead because we push
+             a failure point to `p + mcnt' after we do this.  */
+          p1 = p;
+
+          /* We need to skip no_op's before we look for the
+             start_memory in case this on_failure_jump is happening as
+             the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
+             against aba.  */
+          while (p1 < pend && (re_opcode_t) *p1 == no_op)
+            p1++;
+
+          if (p1 < pend && (re_opcode_t) *p1 == start_memory)
+            {
+              /* We have a new highest active register now.  This will
+                 get reset at the start_memory we are about to get to,
+                 but we will have saved all the registers relevant to
+                 this repetition op, as described above.  */
+              highest_active_reg = *(p1 + 1) + *(p1 + 2);
+              if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
+                lowest_active_reg = *(p1 + 1);
+            }
+
+          DEBUG_PRINT1 (":\n");
+          PUSH_FAILURE_POINT (p + mcnt, d, -2);
+          break;
+
+
+        /* A smart repeat ends with `maybe_pop_jump'.
+	   We change it to either `pop_failure_jump' or `jump'.  */
+        case maybe_pop_jump:
+          EXTRACT_NUMBER_AND_INCR (mcnt, p);
+          DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
+          {
+	    register unsigned char *p2 = p;
+
+            /* Compare the beginning of the repeat with what in the
+               pattern follows its end. If we can establish that there
+               is nothing that they would both match, i.e., that we
+               would have to backtrack because of (as in, e.g., `a*a')
+               then we can change to pop_failure_jump, because we'll
+               never have to backtrack.
+
+               This is not true in the case of alternatives: in
+               `(a|ab)*' we do need to backtrack to the `ab' alternative
+               (e.g., if the string was `ab').  But instead of trying to
+               detect that here, the alternative has put on a dummy
+               failure point which is what we will end up popping.  */
+
+	    /* Skip over open/close-group commands.
+	       If what follows this loop is a ...+ construct,
+	       look at what begins its body, since we will have to
+	       match at least one of that.  */
+	    while (1)
+	      {
+		if (p2 + 2 < pend
+		    && ((re_opcode_t) *p2 == stop_memory
+			|| (re_opcode_t) *p2 == start_memory))
+		  p2 += 3;
+		else if (p2 + 6 < pend
+			 && (re_opcode_t) *p2 == dummy_failure_jump)
+		  p2 += 6;
+		else
+		  break;
+	      }
+
+	    p1 = p + mcnt;
+	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
+	       to the `maybe_finalize_jump' of this case.  Examine what
+	       follows.  */
+
+            /* If we're at the end of the pattern, we can change.  */
+            if (p2 == pend)
+	      {
+		/* Consider what happens when matching ":\(.*\)"
+		   against ":/".  I don't really understand this code
+		   yet.  */
+  	        p[-3] = (unsigned char) pop_failure_jump;
+                DEBUG_PRINT1
+                  ("  End of pattern: change to `pop_failure_jump'.\n");
+              }
+
+            else if ((re_opcode_t) *p2 == exactn
+		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
+	      {
+		register unsigned char c
+                  = *p2 == (unsigned char) endline ? '\n' : p2[2];
+
+                if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
+                  {
+  		    p[-3] = (unsigned char) pop_failure_jump;
+                    DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
+                                  c, p1[5]);
+                  }
+
+		else if ((re_opcode_t) p1[3] == charset
+			 || (re_opcode_t) p1[3] == charset_not)
+		  {
+		    int not = (re_opcode_t) p1[3] == charset_not;
+
+		    if (c < (unsigned char) (p1[4] * BYTEWIDTH)
+			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
+		      not = !not;
+
+                    /* `not' is equal to 1 if c would match, which means
+                        that we can't change to pop_failure_jump.  */
+		    if (!not)
+                      {
+  		        p[-3] = (unsigned char) pop_failure_jump;
+                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
+                      }
+		  }
+	      }
+            else if ((re_opcode_t) *p2 == charset)
+	      {
+#ifdef DEBUG
+		register unsigned char c
+                  = *p2 == (unsigned char) endline ? '\n' : p2[2];
+#endif
+
+#if 0
+                if ((re_opcode_t) p1[3] == exactn
+		    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
+			  && (p2[2 + p1[5] / BYTEWIDTH]
+			      & (1 << (p1[5] % BYTEWIDTH)))))
+#else
+                if ((re_opcode_t) p1[3] == exactn
+		    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
+			  && (p2[2 + p1[4] / BYTEWIDTH]
+			      & (1 << (p1[4] % BYTEWIDTH)))))
+#endif
+                  {
+  		    p[-3] = (unsigned char) pop_failure_jump;
+                    DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
+                                  c, p1[5]);
+                  }
+
+		else if ((re_opcode_t) p1[3] == charset_not)
+		  {
+		    int idx;
+		    /* We win if the charset_not inside the loop
+		       lists every character listed in the charset after.  */
+		    for (idx = 0; idx < (int) p2[1]; idx++)
+		      if (! (p2[2 + idx] == 0
+			     || (idx < (int) p1[4]
+				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
+			break;
+
+		    if (idx == p2[1])
+                      {
+  		        p[-3] = (unsigned char) pop_failure_jump;
+                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
+                      }
+		  }
+		else if ((re_opcode_t) p1[3] == charset)
+		  {
+		    int idx;
+		    /* We win if the charset inside the loop
+		       has no overlap with the one after the loop.  */
+		    for (idx = 0;
+			 idx < (int) p2[1] && idx < (int) p1[4];
+			 idx++)
+		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
+			break;
+
+		    if (idx == p2[1] || idx == p1[4])
+                      {
+  		        p[-3] = (unsigned char) pop_failure_jump;
+                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
+                      }
+		  }
+	      }
+	  }
+	  p -= 2;		/* Point at relative address again.  */
+	  if ((re_opcode_t) p[-1] != pop_failure_jump)
+	    {
+	      p[-1] = (unsigned char) jump;
+              DEBUG_PRINT1 ("  Match => jump.\n");
+	      goto unconditional_jump;
+	    }
+        /* Note fall through.  */
+
+
+	/* The end of a simple repeat has a pop_failure_jump back to
+           its matching on_failure_jump, where the latter will push a
+           failure point.  The pop_failure_jump takes off failure
+           points put on by this pop_failure_jump's matching
+           on_failure_jump; we got through the pattern to here from the
+           matching on_failure_jump, so didn't fail.  */
+        case pop_failure_jump:
+          {
+            /* We need to pass separate storage for the lowest and
+               highest registers, even though we don't care about the
+               actual values.  Otherwise, we will restore only one
+               register from the stack, since lowest will == highest in
+               `pop_failure_point'.  */
+            active_reg_t dummy_low_reg, dummy_high_reg;
+            unsigned char *pdummy;
+            const char *sdummy;
+
+            DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
+            POP_FAILURE_POINT (sdummy, pdummy,
+                               dummy_low_reg, dummy_high_reg,
+                               reg_dummy, reg_dummy, reg_info_dummy);
+          }
+	  /* Note fall through.  */
+
+	unconditional_jump:
+#ifdef _LIBC
+	  DEBUG_PRINT2 ("\n%p: ", p);
+#else
+	  DEBUG_PRINT2 ("\n0x%x: ", p);
+#endif
+          /* Note fall through.  */
+
+        /* Unconditionally jump (without popping any failure points).  */
+        case jump:
+	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
+          DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
+	  p += mcnt;				/* Do the jump.  */
+#ifdef _LIBC
+          DEBUG_PRINT2 ("(to %p).\n", p);
+#else
+          DEBUG_PRINT2 ("(to 0x%x).\n", p);
+#endif
+	  break;
+
+
+        /* We need this opcode so we can detect where alternatives end
+           in `group_match_null_string_p' et al.  */
+        case jump_past_alt:
+          DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
+          goto unconditional_jump;
+
+
+        /* Normally, the on_failure_jump pushes a failure point, which
+           then gets popped at pop_failure_jump.  We will end up at
+           pop_failure_jump, also, and with a pattern of, say, `a+', we
+           are skipping over the on_failure_jump, so we have to push
+           something meaningless for pop_failure_jump to pop.  */
+        case dummy_failure_jump:
+          DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
+          /* It doesn't matter what we push for the string here.  What
+             the code at `fail' tests is the value for the pattern.  */
+          PUSH_FAILURE_POINT (0, 0, -2);
+          goto unconditional_jump;
+
+
+        /* At the end of an alternative, we need to push a dummy failure
+           point in case we are followed by a `pop_failure_jump', because
+           we don't want the failure point for the alternative to be
+           popped.  For example, matching `(a|ab)*' against `aab'
+           requires that we match the `ab' alternative.  */
+        case push_dummy_failure:
+          DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
+          /* See comments just above at `dummy_failure_jump' about the
+             two zeroes.  */
+          PUSH_FAILURE_POINT (0, 0, -2);
+          break;
+
+        /* Have to succeed matching what follows at least n times.
+           After that, handle like `on_failure_jump'.  */
+        case succeed_n:
+          EXTRACT_NUMBER (mcnt, p + 2);
+          DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
+
+          assert (mcnt >= 0);
+          /* Originally, this is how many times we HAVE to succeed.  */
+          if (mcnt > 0)
+            {
+               mcnt--;
+	       p += 2;
+               STORE_NUMBER_AND_INCR (p, mcnt);
+#ifdef _LIBC
+               DEBUG_PRINT3 ("  Setting %p to %d.\n", p - 2, mcnt);
+#else
+               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - 2, mcnt);
+#endif
+            }
+	  else if (mcnt == 0)
+            {
+#ifdef _LIBC
+              DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n", p+2);
+#else
+              DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", p+2);
+#endif
+	      p[2] = (unsigned char) no_op;
+              p[3] = (unsigned char) no_op;
+              goto on_failure;
+            }
+          break;
+
+        case jump_n:
+          EXTRACT_NUMBER (mcnt, p + 2);
+          DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
+
+          /* Originally, this is how many times we CAN jump.  */
+          if (mcnt)
+            {
+               mcnt--;
+               STORE_NUMBER (p + 2, mcnt);
+#ifdef _LIBC
+               DEBUG_PRINT3 ("  Setting %p to %d.\n", p + 2, mcnt);
+#else
+               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + 2, mcnt);
+#endif
+	       goto unconditional_jump;
+            }
+          /* If don't have to jump any more, skip over the rest of command.  */
+	  else
+	    p += 4;
+          break;
+
+	case set_number_at:
+	  {
+            DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
+
+            EXTRACT_NUMBER_AND_INCR (mcnt, p);
+            p1 = p + mcnt;
+            EXTRACT_NUMBER_AND_INCR (mcnt, p);
+#ifdef _LIBC
+            DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
+#else
+            DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
+#endif
+	    STORE_NUMBER (p1, mcnt);
+            break;
+          }
+
+#if 0
+	/* The DEC Alpha C compiler 3.x generates incorrect code for the
+	   test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
+	   AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
+	   macro and introducing temporary variables works around the bug.  */
+
+	case wordbound:
+	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
+	  if (AT_WORD_BOUNDARY (d))
+	    break;
+	  goto fail;
+
+	case notwordbound:
+	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
+	  if (AT_WORD_BOUNDARY (d))
+	    goto fail;
+	  break;
+#else
+	case wordbound:
+	{
+	  boolean prevchar, thischar;
+
+	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
+	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
+	    break;
+
+	  prevchar = WORDCHAR_P (d - 1);
+	  thischar = WORDCHAR_P (d);
+	  if (prevchar != thischar)
+	    break;
+	  goto fail;
+	}
+
+      case notwordbound:
+	{
+	  boolean prevchar, thischar;
+
+	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
+	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
+	    goto fail;
+
+	  prevchar = WORDCHAR_P (d - 1);
+	  thischar = WORDCHAR_P (d);
+	  if (prevchar != thischar)
+	    goto fail;
+	  break;
+	}
+#endif
+
+	case wordbeg:
+          DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
+	  if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
+	    break;
+          goto fail;
+
+	case wordend:
+          DEBUG_PRINT1 ("EXECUTING wordend.\n");
+	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
+              && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
+	    break;
+          goto fail;
+
+#ifdef emacs
+  	case before_dot:
+          DEBUG_PRINT1 ("EXECUTING before_dot.\n");
+ 	  if (PTR_CHAR_POS ((unsigned char *) d) >= point)
+  	    goto fail;
+  	  break;
+
+  	case at_dot:
+          DEBUG_PRINT1 ("EXECUTING at_dot.\n");
+ 	  if (PTR_CHAR_POS ((unsigned char *) d) != point)
+  	    goto fail;
+  	  break;
+
+  	case after_dot:
+          DEBUG_PRINT1 ("EXECUTING after_dot.\n");
+          if (PTR_CHAR_POS ((unsigned char *) d) <= point)
+  	    goto fail;
+  	  break;
+
+	case syntaxspec:
+          DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
+	  mcnt = *p++;
+	  goto matchsyntax;
+
+        case wordchar:
+          DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
+	  mcnt = (int) Sword;
+        matchsyntax:
+	  PREFETCH ();
+	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
+	  d++;
+	  if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
+	    goto fail;
+          SET_REGS_MATCHED ();
+	  break;
+
+	case notsyntaxspec:
+          DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
+	  mcnt = *p++;
+	  goto matchnotsyntax;
+
+        case notwordchar:
+          DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
+	  mcnt = (int) Sword;
+        matchnotsyntax:
+	  PREFETCH ();
+	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
+	  d++;
+	  if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
+	    goto fail;
+	  SET_REGS_MATCHED ();
+          break;
+
+#else /* not emacs */
+	case wordchar:
+          DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
+	  PREFETCH ();
+          if (!WORDCHAR_P (d))
+            goto fail;
+	  SET_REGS_MATCHED ();
+          d++;
+	  break;
+
+	case notwordchar:
+          DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
+	  PREFETCH ();
+	  if (WORDCHAR_P (d))
+            goto fail;
+          SET_REGS_MATCHED ();
+          d++;
+	  break;
+#endif /* not emacs */
+
+        default:
+          abort ();
+	}
+      continue;  /* Successfully executed one pattern command; keep going.  */
+
+
+    /* We goto here if a matching operation fails. */
+    fail:
+      if (!FAIL_STACK_EMPTY ())
+	{ /* A restart point is known.  Restore to that state.  */
+          DEBUG_PRINT1 ("\nFAIL:\n");
+          POP_FAILURE_POINT (d, p,
+                             lowest_active_reg, highest_active_reg,
+                             regstart, regend, reg_info);
+
+          /* If this failure point is a dummy, try the next one.  */
+          if (!p)
+	    goto fail;
+
+          /* If we failed to the end of the pattern, don't examine *p.  */
+	  assert (p <= pend);
+          if (p < pend)
+            {
+              boolean is_a_jump_n = false;
+
+              /* If failed to a backwards jump that's part of a repetition
+                 loop, need to pop this failure point and use the next one.  */
+              switch ((re_opcode_t) *p)
+                {
+                case jump_n:
+                  is_a_jump_n = true;
+                case maybe_pop_jump:
+                case pop_failure_jump:
+                case jump:
+                  p1 = p + 1;
+                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+                  p1 += mcnt;
+
+                  if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
+                      || (!is_a_jump_n
+                          && (re_opcode_t) *p1 == on_failure_jump))
+                    goto fail;
+                  break;
+                default:
+                  /* do nothing */ ;
+                }
+            }
+
+          if (d >= string1 && d <= end1)
+	    dend = end_match_1;
+        }
+      else
+        break;   /* Matching at this starting point really fails.  */
+    } /* for (;;) */
+
+  if (best_regs_set)
+    goto restore_best_regs;
+
+  FREE_VARIABLES ();
+
+  return -1;         			/* Failure to match.  */
+} /* re_match_2 */
+
+/* Subroutine definitions for re_match_2.  */
+
+
+/* We are passed P pointing to a register number after a start_memory.
+
+   Return true if the pattern up to the corresponding stop_memory can
+   match the empty string, and false otherwise.
+
+   If we find the matching stop_memory, sets P to point to one past its number.
+   Otherwise, sets P to an undefined byte less than or equal to END.
+
+   We don't handle duplicates properly (yet).  */
+
+static boolean
+group_match_null_string_p (p, end, reg_info)
+    unsigned char **p, *end;
+    register_info_type *reg_info;
+{
+  int mcnt;
+  /* Point to after the args to the start_memory.  */
+  unsigned char *p1 = *p + 2;
+
+  while (p1 < end)
+    {
+      /* Skip over opcodes that can match nothing, and return true or
+	 false, as appropriate, when we get to one that can't, or to the
+         matching stop_memory.  */
+
+      switch ((re_opcode_t) *p1)
+        {
+        /* Could be either a loop or a series of alternatives.  */
+        case on_failure_jump:
+          p1++;
+          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+
+          /* If the next operation is not a jump backwards in the
+	     pattern.  */
+
+	  if (mcnt >= 0)
+	    {
+              /* Go through the on_failure_jumps of the alternatives,
+                 seeing if any of the alternatives cannot match nothing.
+                 The last alternative starts with only a jump,
+                 whereas the rest start with on_failure_jump and end
+                 with a jump, e.g., here is the pattern for `a|b|c':
+
+                 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
+                 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
+                 /exactn/1/c
+
+                 So, we have to first go through the first (n-1)
+                 alternatives and then deal with the last one separately.  */
+
+
+              /* Deal with the first (n-1) alternatives, which start
+                 with an on_failure_jump (see above) that jumps to right
+                 past a jump_past_alt.  */
+
+              while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
+                {
+                  /* `mcnt' holds how many bytes long the alternative
+                     is, including the ending `jump_past_alt' and
+                     its number.  */
+
+                  if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
+				                      reg_info))
+                    return false;
+
+                  /* Move to right after this alternative, including the
+		     jump_past_alt.  */
+                  p1 += mcnt;
+
+                  /* Break if it's the beginning of an n-th alternative
+                     that doesn't begin with an on_failure_jump.  */
+                  if ((re_opcode_t) *p1 != on_failure_jump)
+                    break;
+
+		  /* Still have to check that it's not an n-th
+		     alternative that starts with an on_failure_jump.  */
+		  p1++;
+                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+                  if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
+                    {
+		      /* Get to the beginning of the n-th alternative.  */
+                      p1 -= 3;
+                      break;
+                    }
+                }
+
+              /* Deal with the last alternative: go back and get number
+                 of the `jump_past_alt' just before it.  `mcnt' contains
+                 the length of the alternative.  */
+              EXTRACT_NUMBER (mcnt, p1 - 2);
+
+              if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
+                return false;
+
+              p1 += mcnt;	/* Get past the n-th alternative.  */
+            } /* if mcnt > 0 */
+          break;
+
+
+        case stop_memory:
+	  assert (p1[1] == **p);
+          *p = p1 + 2;
+          return true;
+
+
+        default:
+          if (!common_op_match_null_string_p (&p1, end, reg_info))
+            return false;
+        }
+    } /* while p1 < end */
+
+  return false;
+} /* group_match_null_string_p */
+
+
+/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
+   It expects P to be the first byte of a single alternative and END one
+   byte past the last. The alternative can contain groups.  */
+
+static boolean
+alt_match_null_string_p (p, end, reg_info)
+    unsigned char *p, *end;
+    register_info_type *reg_info;
+{
+  int mcnt;
+  unsigned char *p1 = p;
+
+  while (p1 < end)
+    {
+      /* Skip over opcodes that can match nothing, and break when we get
+         to one that can't.  */
+
+      switch ((re_opcode_t) *p1)
+        {
+	/* It's a loop.  */
+        case on_failure_jump:
+          p1++;
+          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+          p1 += mcnt;
+          break;
+
+	default:
+          if (!common_op_match_null_string_p (&p1, end, reg_info))
+            return false;
+        }
+    }  /* while p1 < end */
+
+  return true;
+} /* alt_match_null_string_p */
+
+
+/* Deals with the ops common to group_match_null_string_p and
+   alt_match_null_string_p.
+
+   Sets P to one after the op and its arguments, if any.  */
+
+static boolean
+common_op_match_null_string_p (p, end, reg_info)
+    unsigned char **p, *end;
+    register_info_type *reg_info;
+{
+  int mcnt;
+  boolean ret;
+  int reg_no;
+  unsigned char *p1 = *p;
+
+  switch ((re_opcode_t) *p1++)
+    {
+    case no_op:
+    case begline:
+    case endline:
+    case begbuf:
+    case endbuf:
+    case wordbeg:
+    case wordend:
+    case wordbound:
+    case notwordbound:
+#ifdef emacs
+    case before_dot:
+    case at_dot:
+    case after_dot:
+#endif
+      break;
+
+    case start_memory:
+      reg_no = *p1;
+      assert (reg_no > 0 && reg_no <= MAX_REGNUM);
+      ret = group_match_null_string_p (&p1, end, reg_info);
+
+      /* Have to set this here in case we're checking a group which
+         contains a group and a back reference to it.  */
+
+      if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
+        REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
+
+      if (!ret)
+        return false;
+      break;
+
+    /* If this is an optimized succeed_n for zero times, make the jump.  */
+    case jump:
+      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+      if (mcnt >= 0)
+        p1 += mcnt;
+      else
+        return false;
+      break;
+
+    case succeed_n:
+      /* Get to the number of times to succeed.  */
+      p1 += 2;
+      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+
+      if (mcnt == 0)
+        {
+          p1 -= 4;
+          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+          p1 += mcnt;
+        }
+      else
+        return false;
+      break;
+
+    case duplicate:
+      if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
+        return false;
+      break;
+
+    case set_number_at:
+      p1 += 4;
+
+    default:
+      /* All other opcodes mean we cannot match the empty string.  */
+      return false;
+  }
+
+  *p = p1;
+  return true;
+} /* common_op_match_null_string_p */
+
+
+/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
+   bytes; nonzero otherwise.  */
+
+static int
+bcmp_translate (s1, s2, len, translate)
+     const char *s1, *s2;
+     register int len;
+     RE_TRANSLATE_TYPE translate;
+{
+  register const unsigned char *p1 = (const unsigned char *) s1;
+  register const unsigned char *p2 = (const unsigned char *) s2;
+  while (len)
+    {
+      if (translate[*p1++] != translate[*p2++]) return 1;
+      len--;
+    }
+  return 0;
+}
+
+/* Entry points for GNU code.  */
+
+/* re_compile_pattern is the GNU regular expression compiler: it
+   compiles PATTERN (of length SIZE) and puts the result in BUFP.
+   Returns 0 if the pattern was valid, otherwise an error string.
+
+   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
+   are set in BUFP on entry.
+
+   We call regex_compile to do the actual compilation.  */
+
+const char *
+re_compile_pattern (pattern, length, bufp)
+     const char *pattern;
+     size_t length;
+     struct re_pattern_buffer *bufp;
+{
+  reg_errcode_t ret;
+
+  /* GNU code is written to assume at least RE_NREGS registers will be set
+     (and at least one extra will be -1).  */
+  bufp->regs_allocated = REGS_UNALLOCATED;
+
+  /* And GNU code determines whether or not to get register information
+     by passing null for the REGS argument to re_match, etc., not by
+     setting no_sub.  */
+  bufp->no_sub = 0;
+
+  /* Match anchors at newline.  */
+  bufp->newline_anchor = 1;
+
+  ret = regex_compile (pattern, length, re_syntax_options, bufp);
+
+  if (!ret)
+    return NULL;
+  return gettext (re_error_msgid[(int) ret]);
+}
+
+/* Entry points compatible with 4.2 BSD regex library.  We don't define
+   them unless specifically requested.  */
+
+#if defined (_REGEX_RE_COMP) || defined (_LIBC)
+
+/* BSD has one and only one pattern buffer.  */
+static struct re_pattern_buffer re_comp_buf;
+
+char *
+#ifdef _LIBC
+/* Make these definitions weak in libc, so POSIX programs can redefine
+   these names if they don't use our functions, and still use
+   regcomp/regexec below without link errors.  */
+weak_function
+#endif
+re_comp (s)
+    const char *s;
+{
+  reg_errcode_t ret;
+
+  if (!s)
+    {
+      if (!re_comp_buf.buffer)
+	return gettext ("No previous regular expression");
+      return 0;
+    }
+
+  if (!re_comp_buf.buffer)
+    {
+      re_comp_buf.buffer = (unsigned char *) malloc (200);
+      if (re_comp_buf.buffer == NULL)
+        return gettext (re_error_msgid[(int) REG_ESPACE]);
+      re_comp_buf.allocated = 200;
+
+      re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
+      if (re_comp_buf.fastmap == NULL)
+	return gettext (re_error_msgid[(int) REG_ESPACE]);
+    }
+
+  /* Since `re_exec' always passes NULL for the `regs' argument, we
+     don't need to initialize the pattern buffer fields which affect it.  */
+
+  /* Match anchors at newlines.  */
+  re_comp_buf.newline_anchor = 1;
+
+  ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
+
+  if (!ret)
+    return NULL;
+
+  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
+  return (char *) gettext (re_error_msgid[(int) ret]);
+}
+
+
+int
+#ifdef _LIBC
+weak_function
+#endif
+re_exec (s)
+    const char *s;
+{
+  const int len = strlen (s);
+  return
+    0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
+}
+
+#endif /* _REGEX_RE_COMP */
+
+/* POSIX.2 functions.  Don't define these for Emacs.  */
+
+#ifndef emacs
+
+/* regcomp takes a regular expression as a string and compiles it.
+
+   PREG is a regex_t *.  We do not expect any fields to be initialized,
+   since POSIX says we shouldn't.  Thus, we set
+
+     `buffer' to the compiled pattern;
+     `used' to the length of the compiled pattern;
+     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
+       REG_EXTENDED bit in CFLAGS is set; otherwise, to
+       RE_SYNTAX_POSIX_BASIC;
+     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
+     `fastmap' and `fastmap_accurate' to zero;
+     `re_nsub' to the number of subexpressions in PATTERN.
+
+   PATTERN is the address of the pattern string.
+
+   CFLAGS is a series of bits which affect compilation.
+
+     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
+     use POSIX basic syntax.
+
+     If REG_NEWLINE is set, then . and [^...] don't match newline.
+     Also, regexec will try a match beginning after every newline.
+
+     If REG_ICASE is set, then we considers upper- and lowercase
+     versions of letters to be equivalent when matching.
+
+     If REG_NOSUB is set, then when PREG is passed to regexec, that
+     routine will report only success or failure, and nothing about the
+     registers.
+
+   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
+   the return codes and their meanings.)  */
+
+int
+regcomp (preg, pattern, cflags)
+    regex_t *preg;
+    const char *pattern;
+    int cflags;
+{
+  reg_errcode_t ret;
+  reg_syntax_t syntax
+    = (cflags & REG_EXTENDED) ?
+      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
+
+  /* regex_compile will allocate the space for the compiled pattern.  */
+  preg->buffer = 0;
+  preg->allocated = 0;
+  preg->used = 0;
+
+  /* Don't bother to use a fastmap when searching.  This simplifies the
+     REG_NEWLINE case: if we used a fastmap, we'd have to put all the
+     characters after newlines into the fastmap.  This way, we just try
+     every character.  */
+  preg->fastmap = 0;
+
+  if (cflags & REG_ICASE)
+    {
+      unsigned i;
+
+      preg->translate
+	= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
+				      * sizeof (*(RE_TRANSLATE_TYPE)0));
+      if (preg->translate == NULL)
+        return (int) REG_ESPACE;
+
+      /* Map uppercase characters to corresponding lowercase ones.  */
+      for (i = 0; i < CHAR_SET_SIZE; i++)
+        preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
+    }
+  else
+    preg->translate = NULL;
+
+  /* If REG_NEWLINE is set, newlines are treated differently.  */
+  if (cflags & REG_NEWLINE)
+    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
+      syntax &= ~RE_DOT_NEWLINE;
+      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
+      /* It also changes the matching behavior.  */
+      preg->newline_anchor = 1;
+    }
+  else
+    preg->newline_anchor = 0;
+
+  preg->no_sub = !!(cflags & REG_NOSUB);
+
+  /* POSIX says a null character in the pattern terminates it, so we
+     can use strlen here in compiling the pattern.  */
+  ret = regex_compile (pattern, strlen (pattern), syntax, preg);
+
+  /* POSIX doesn't distinguish between an unmatched open-group and an
+     unmatched close-group: both are REG_EPAREN.  */
+  if (ret == REG_ERPAREN) ret = REG_EPAREN;
+
+  return (int) ret;
+}
+
+
+/* regexec searches for a given pattern, specified by PREG, in the
+   string STRING.
+
+   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
+   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
+   least NMATCH elements, and we set them to the offsets of the
+   corresponding matched substrings.
+
+   EFLAGS specifies `execution flags' which affect matching: if
+   REG_NOTBOL is set, then ^ does not match at the beginning of the
+   string; if REG_NOTEOL is set, then $ does not match at the end.
+
+   We return 0 if we find a match and REG_NOMATCH if not.  */
+
+int
+regexec (preg, string, nmatch, pmatch, eflags)
+    const regex_t *preg;
+    const char *string;
+    size_t nmatch;
+    regmatch_t pmatch[];
+    int eflags;
+{
+  int ret;
+  struct re_registers regs;
+  regex_t private_preg;
+  int len = strlen (string);
+  boolean want_reg_info = !preg->no_sub && nmatch > 0;
+
+  private_preg = *preg;
+
+  private_preg.not_bol = !!(eflags & REG_NOTBOL);
+  private_preg.not_eol = !!(eflags & REG_NOTEOL);
+
+  /* The user has told us exactly how many registers to return
+     information about, via `nmatch'.  We have to pass that on to the
+     matching routines.  */
+  private_preg.regs_allocated = REGS_FIXED;
+
+  if (want_reg_info)
+    {
+      regs.num_regs = nmatch;
+      regs.start = TALLOC (nmatch, regoff_t);
+      regs.end = TALLOC (nmatch, regoff_t);
+      if (regs.start == NULL || regs.end == NULL)
+        return (int) REG_NOMATCH;
+    }
+
+  /* Perform the searching operation.  */
+  ret = re_search (&private_preg, string, len,
+                   /* start: */ 0, /* range: */ len,
+                   want_reg_info ? &regs : (struct re_registers *) 0);
+
+  /* Copy the register information to the POSIX structure.  */
+  if (want_reg_info)
+    {
+      if (ret >= 0)
+        {
+          unsigned r;
+
+          for (r = 0; r < nmatch; r++)
+            {
+              pmatch[r].rm_so = regs.start[r];
+              pmatch[r].rm_eo = regs.end[r];
+            }
+        }
+
+      /* If we needed the temporary register info, free the space now.  */
+      free (regs.start);
+      free (regs.end);
+    }
+
+  /* We want zero return to mean success, unlike `re_search'.  */
+  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
+}
+
+
+/* Returns a message corresponding to an error code, ERRCODE, returned
+   from either regcomp or regexec.   We don't use PREG here.  */
+
+size_t
+regerror (int errcode, const regex_t *preg, char *errbuf, size_t errbuf_size)
+{
+  const char *msg;
+  size_t msg_size;
+
+  if (errcode < 0
+      || errcode >= (int) (sizeof (re_error_msgid)
+			   / sizeof (re_error_msgid[0])))
+    /* Only error codes returned by the rest of the code should be passed
+       to this routine.  If we are given anything else, or if other regex
+       code generates an invalid error code, then the program has a bug.
+       Dump core so we can fix it.  */
+    abort ();
+
+  msg = gettext (re_error_msgid[errcode]);
+
+  msg_size = strlen (msg) + 1; /* Includes the null.  */
+
+  if (errbuf_size != 0)
+    {
+      if (msg_size > errbuf_size)
+        {
+          strncpy (errbuf, msg, errbuf_size - 1);
+          errbuf[errbuf_size - 1] = 0;
+        }
+      else
+        strcpy (errbuf, msg);
+    }
+
+  return msg_size;
+}
+
+
+/* Free dynamically allocated space used by PREG.  */
+
+void
+regfree (preg)
+    regex_t *preg;
+{
+  if (preg->buffer != NULL)
+    free (preg->buffer);
+  preg->buffer = NULL;
+
+  preg->allocated = 0;
+  preg->used = 0;
+
+  if (preg->fastmap != NULL)
+    free (preg->fastmap);
+  preg->fastmap = NULL;
+  preg->fastmap_accurate = 0;
+
+  if (preg->translate != NULL)
+    free (preg->translate);
+  preg->translate = NULL;
+}
+
+#endif /* not emacs  */

Deleted: trunk/src/utilfuns/regex_internal.c
===================================================================
--- trunk/src/utilfuns/regex_internal.c	2009-12-07 04:02:43 UTC (rev 2486)
+++ trunk/src/utilfuns/regex_internal.c	2009-12-08 07:18:00 UTC (rev 2487)
@@ -1,1713 +0,0 @@
-/* Extended regular expression matching and search library.
-   Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
-   This file is part of the GNU C Library.
-   Contributed by Isamu Hasegawa <isamu at yamato.ibm.com>.
-
-   The GNU C Library is free software; you can redistribute it and/or
-   modify it under the terms of the GNU Lesser General Public
-   License as published by the Free Software Foundation; either
-   version 2.1 of the License, or (at your option) any later version.
-
-   The GNU C Library is distributed in the hope that it will be useful,
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-   Lesser General Public License for more details.
-
-   You should have received a copy of the GNU Lesser General Public
-   License along with the GNU C Library; if not, write to the Free
-   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
-   02111-1307 USA.  */
-
-static void re_string_construct_common (const char *str, int len,
-					re_string_t *pstr,
-					RE_TRANSLATE_TYPE trans, int icase,
-					const re_dfa_t *dfa) internal_function;
-static re_dfastate_t *create_ci_newstate (const re_dfa_t *dfa,
-					  const re_node_set *nodes,
-					  unsigned int hash) internal_function;
-static re_dfastate_t *create_cd_newstate (const re_dfa_t *dfa,
-					  const re_node_set *nodes,
-					  unsigned int context,
-					  unsigned int hash) internal_function;
-
-/* Functions for string operation.  */
-
-/* This function allocate the buffers.  It is necessary to call
-   re_string_reconstruct before using the object.  */
-
-static reg_errcode_t
-internal_function
-re_string_allocate (re_string_t *pstr, const char *str, int len, int init_len,
-		    RE_TRANSLATE_TYPE trans, int icase, const re_dfa_t *dfa)
-{
-  reg_errcode_t ret;
-  int init_buf_len;
-
-  /* Ensure at least one character fits into the buffers.  */
-  if (init_len < dfa->mb_cur_max)
-    init_len = dfa->mb_cur_max;
-  init_buf_len = (len + 1 < init_len) ? len + 1: init_len;
-  re_string_construct_common (str, len, pstr, trans, icase, dfa);
-
-  ret = re_string_realloc_buffers (pstr, init_buf_len);
-  if (BE (ret != REG_NOERROR, 0))
-    return ret;
-
-  pstr->word_char = dfa->word_char;
-  pstr->word_ops_used = dfa->word_ops_used;
-  pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str;
-  pstr->valid_len = (pstr->mbs_allocated || dfa->mb_cur_max > 1) ? 0 : len;
-  pstr->valid_raw_len = pstr->valid_len;
-  return REG_NOERROR;
-}
-
-/* This function allocate the buffers, and initialize them.  */
-
-static reg_errcode_t
-internal_function
-re_string_construct (re_string_t *pstr, const char *str, int len,
-		     RE_TRANSLATE_TYPE trans, int icase, const re_dfa_t *dfa)
-{
-  reg_errcode_t ret;
-  memset (pstr, '\0', sizeof (re_string_t));
-  re_string_construct_common (str, len, pstr, trans, icase, dfa);
-
-  if (len > 0)
-    {
-      ret = re_string_realloc_buffers (pstr, len + 1);
-      if (BE (ret != REG_NOERROR, 0))
-	return ret;
-    }
-  pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str;
-
-  if (icase)
-    {
-#ifdef RE_ENABLE_I18N
-      if (dfa->mb_cur_max > 1)
-	{
-	  while (1)
-	    {
-	      ret = build_wcs_upper_buffer (pstr);
-	      if (BE (ret != REG_NOERROR, 0))
-		return ret;
-	      if (pstr->valid_raw_len >= len)
-		break;
-	      if (pstr->bufs_len > pstr->valid_len + dfa->mb_cur_max)
-		break;
-	      ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2);
-	      if (BE (ret != REG_NOERROR, 0))
-		return ret;
-	    }
-	}
-      else
-#endif /* RE_ENABLE_I18N  */
-	build_upper_buffer (pstr);
-    }
-  else
-    {
-#ifdef RE_ENABLE_I18N
-      if (dfa->mb_cur_max > 1)
-	build_wcs_buffer (pstr);
-      else
-#endif /* RE_ENABLE_I18N  */
-	{
-	  if (trans != NULL)
-	    re_string_translate_buffer (pstr);
-	  else
-	    {
-	      pstr->valid_len = pstr->bufs_len;
-	      pstr->valid_raw_len = pstr->bufs_len;
-	    }
-	}
-    }
-
-  return REG_NOERROR;
-}
-
-/* Helper functions for re_string_allocate, and re_string_construct.  */
-
-static reg_errcode_t
-internal_function
-re_string_realloc_buffers (re_string_t *pstr, int new_buf_len)
-{
-#ifdef RE_ENABLE_I18N
-  if (pstr->mb_cur_max > 1)
-    {
-      wint_t *new_wcs = re_realloc (pstr->wcs, wint_t, new_buf_len);
-      if (BE (new_wcs == NULL, 0))
-	return REG_ESPACE;
-      pstr->wcs = new_wcs;
-      if (pstr->offsets != NULL)
-	{
-	  int *new_offsets = re_realloc (pstr->offsets, int, new_buf_len);
-	  if (BE (new_offsets == NULL, 0))
-	    return REG_ESPACE;
-	  pstr->offsets = new_offsets;
-	}
-    }
-#endif /* RE_ENABLE_I18N  */
-  if (pstr->mbs_allocated)
-    {
-      unsigned char *new_mbs = re_realloc (pstr->mbs, unsigned char,
-					   new_buf_len);
-      if (BE (new_mbs == NULL, 0))
-	return REG_ESPACE;
-      pstr->mbs = new_mbs;
-    }
-  pstr->bufs_len = new_buf_len;
-  return REG_NOERROR;
-}
-
-
-static void
-internal_function
-re_string_construct_common (const char *str, int len, re_string_t *pstr,
-			    RE_TRANSLATE_TYPE trans, int icase,
-			    const re_dfa_t *dfa)
-{
-  pstr->raw_mbs = (const unsigned char *) str;
-  pstr->len = len;
-  pstr->raw_len = len;
-  pstr->trans = trans;
-  pstr->icase = icase ? 1 : 0;
-  pstr->mbs_allocated = (trans != NULL || icase);
-  pstr->mb_cur_max = dfa->mb_cur_max;
-  pstr->is_utf8 = dfa->is_utf8;
-  pstr->map_notascii = dfa->map_notascii;
-  pstr->stop = pstr->len;
-  pstr->raw_stop = pstr->stop;
-}
-
-#ifdef RE_ENABLE_I18N
-
-/* Build wide character buffer PSTR->WCS.
-   If the byte sequence of the string are:
-     <mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3>
-   Then wide character buffer will be:
-     <wc1>   , WEOF    , <wc2>   , WEOF    , <wc3>
-   We use WEOF for padding, they indicate that the position isn't
-   a first byte of a multibyte character.
-
-   Note that this function assumes PSTR->VALID_LEN elements are already
-   built and starts from PSTR->VALID_LEN.  */
-
-static void
-internal_function
-build_wcs_buffer (re_string_t *pstr)
-{
-#ifdef _LIBC
-  unsigned char buf[MB_LEN_MAX];
-  assert (MB_LEN_MAX >= pstr->mb_cur_max);
-#else
-  unsigned char buf[64];
-#endif
-  mbstate_t prev_st;
-  int byte_idx, end_idx, remain_len;
-  size_t mbclen;
-
-  /* Build the buffers from pstr->valid_len to either pstr->len or
-     pstr->bufs_len.  */
-  end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
-  for (byte_idx = pstr->valid_len; byte_idx < end_idx;)
-    {
-      wchar_t wc;
-      const char *p;
-
-      remain_len = end_idx - byte_idx;
-      prev_st = pstr->cur_state;
-      /* Apply the translation if we need.  */
-      if (BE (pstr->trans != NULL, 0))
-	{
-	  int i, ch;
-
-	  for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i)
-	    {
-	      ch = pstr->raw_mbs [pstr->raw_mbs_idx + byte_idx + i];
-	      buf[i] = pstr->mbs[byte_idx + i] = pstr->trans[ch];
-	    }
-	  p = (const char *) buf;
-	}
-      else
-	p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx;
-      mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state);
-      if (BE (mbclen == (size_t) -2, 0))
-	{
-	  /* The buffer doesn't have enough space, finish to build.  */
-	  pstr->cur_state = prev_st;
-	  break;
-	}
-      else if (BE (mbclen == (size_t) -1 || mbclen == 0, 0))
-	{
-	  /* We treat these cases as a singlebyte character.  */
-	  mbclen = 1;
-	  wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx];
-	  if (BE (pstr->trans != NULL, 0))
-	    wc = pstr->trans[wc];
-	  pstr->cur_state = prev_st;
-	}
-
-      /* Write wide character and padding.  */
-      pstr->wcs[byte_idx++] = wc;
-      /* Write paddings.  */
-      for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
-	pstr->wcs[byte_idx++] = WEOF;
-    }
-  pstr->valid_len = byte_idx;
-  pstr->valid_raw_len = byte_idx;
-}
-
-/* Build wide character buffer PSTR->WCS like build_wcs_buffer,
-   but for REG_ICASE.  */
-
-static reg_errcode_t
-internal_function
-build_wcs_upper_buffer (re_string_t *pstr)
-{
-  mbstate_t prev_st;
-  int src_idx, byte_idx, end_idx, remain_len;
-  size_t mbclen;
-#ifdef _LIBC
-  char buf[MB_LEN_MAX];
-  assert (MB_LEN_MAX >= pstr->mb_cur_max);
-#else
-  char buf[64];
-#endif
-
-  byte_idx = pstr->valid_len;
-  end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
-
-  /* The following optimization assumes that ASCII characters can be
-     mapped to wide characters with a simple cast.  */
-  if (! pstr->map_notascii && pstr->trans == NULL && !pstr->offsets_needed)
-    {
-      while (byte_idx < end_idx)
-	{
-	  wchar_t wc;
-
-	  if (isascii (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx])
-	      && mbsinit (&pstr->cur_state))
-	    {
-	      /* In case of a singlebyte character.  */
-	      pstr->mbs[byte_idx]
-		= toupper (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]);
-	      /* The next step uses the assumption that wchar_t is encoded
-		 ASCII-safe: all ASCII values can be converted like this.  */
-	      pstr->wcs[byte_idx] = (wchar_t) pstr->mbs[byte_idx];
-	      ++byte_idx;
-	      continue;
-	    }
-
-	  remain_len = end_idx - byte_idx;
-	  prev_st = pstr->cur_state;
-	  mbclen = __mbrtowc (&wc,
-			      ((const char *) pstr->raw_mbs + pstr->raw_mbs_idx
-			       + byte_idx), remain_len, &pstr->cur_state);
-	  if (BE (mbclen + 2 > 2, 1))
-	    {
-	      wchar_t wcu = wc;
-	      if (iswlower (wc))
-		{
-		  size_t mbcdlen;
-
-		  wcu = towupper (wc);
-		  mbcdlen = wcrtomb (buf, wcu, &prev_st);
-		  if (BE (mbclen == mbcdlen, 1))
-		    memcpy (pstr->mbs + byte_idx, buf, mbclen);
-		  else
-		    {
-		      src_idx = byte_idx;
-		      goto offsets_needed;
-		    }
-		}
-	      else
-		memcpy (pstr->mbs + byte_idx,
-			pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen);
-	      pstr->wcs[byte_idx++] = wcu;
-	      /* Write paddings.  */
-	      for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
-		pstr->wcs[byte_idx++] = WEOF;
-	    }
-	  else if (mbclen == (size_t) -1 || mbclen == 0)
-	    {
-	      /* It is an invalid character or '\0'.  Just use the byte.  */
-	      int ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx];
-	      pstr->mbs[byte_idx] = ch;
-	      /* And also cast it to wide char.  */
-	      pstr->wcs[byte_idx++] = (wchar_t) ch;
-	      if (BE (mbclen == (size_t) -1, 0))
-		pstr->cur_state = prev_st;
-	    }
-	  else
-	    {
-	      /* The buffer doesn't have enough space, finish to build.  */
-	      pstr->cur_state = prev_st;
-	      break;
-	    }
-	}
-      pstr->valid_len = byte_idx;
-      pstr->valid_raw_len = byte_idx;
-      return REG_NOERROR;
-    }
-  else
-    for (src_idx = pstr->valid_raw_len; byte_idx < end_idx;)
-      {
-	wchar_t wc;
-	const char *p;
-      offsets_needed:
-	remain_len = end_idx - byte_idx;
-	prev_st = pstr->cur_state;
-	if (BE (pstr->trans != NULL, 0))
-	  {
-	    int i, ch;
-
-	    for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i)
-	      {
-		ch = pstr->raw_mbs [pstr->raw_mbs_idx + src_idx + i];
-		buf[i] = pstr->trans[ch];
-	      }
-	    p = (const char *) buf;
-	  }
-	else
-	  p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + src_idx;
-	mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state);
-	if (BE (mbclen + 2 > 2, 1))
-	  {
-	    wchar_t wcu = wc;
-	    if (iswlower (wc))
-	      {
-		size_t mbcdlen;
-
-		wcu = towupper (wc);
-		mbcdlen = wcrtomb ((char *) buf, wcu, &prev_st);
-		if (BE (mbclen == mbcdlen, 1))
-		  memcpy (pstr->mbs + byte_idx, buf, mbclen);
-		else if (mbcdlen != (size_t) -1)
-		  {
-		    size_t i;
-
-		    if (byte_idx + mbcdlen > pstr->bufs_len)
-		      {
-			pstr->cur_state = prev_st;
-			break;
-		      }
-
-		    if (pstr->offsets == NULL)
-		      {
-			pstr->offsets = re_malloc (int, pstr->bufs_len);
-
-			if (pstr->offsets == NULL)
-			  return REG_ESPACE;
-		      }
-		    if (!pstr->offsets_needed)
-		      {
-			for (i = 0; i < (size_t) byte_idx; ++i)
-			  pstr->offsets[i] = i;
-			pstr->offsets_needed = 1;
-		      }
-
-		    memcpy (pstr->mbs + byte_idx, buf, mbcdlen);
-		    pstr->wcs[byte_idx] = wcu;
-		    pstr->offsets[byte_idx] = src_idx;
-		    for (i = 1; i < mbcdlen; ++i)
-		      {
-			pstr->offsets[byte_idx + i]
-			  = src_idx + (i < mbclen ? i : mbclen - 1);
-			pstr->wcs[byte_idx + i] = WEOF;
-		      }
-		    pstr->len += mbcdlen - mbclen;
-		    if (pstr->raw_stop > src_idx)
-		      pstr->stop += mbcdlen - mbclen;
-		    end_idx = (pstr->bufs_len > pstr->len)
-			      ? pstr->len : pstr->bufs_len;
-		    byte_idx += mbcdlen;
-		    src_idx += mbclen;
-		    continue;
-		  }
-                else
-                  memcpy (pstr->mbs + byte_idx, p, mbclen);
-	      }
-	    else
-	      memcpy (pstr->mbs + byte_idx, p, mbclen);
-
-	    if (BE (pstr->offsets_needed != 0, 0))
-	      {
-		size_t i;
-		for (i = 0; i < mbclen; ++i)
-		  pstr->offsets[byte_idx + i] = src_idx + i;
-	      }
-	    src_idx += mbclen;
-
-	    pstr->wcs[byte_idx++] = wcu;
-	    /* Write paddings.  */
-	    for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
-	      pstr->wcs[byte_idx++] = WEOF;
-	  }
-	else if (mbclen == (size_t) -1 || mbclen == 0)
-	  {
-	    /* It is an invalid character or '\0'.  Just use the byte.  */
-	    int ch = pstr->raw_mbs[pstr->raw_mbs_idx + src_idx];
-
-	    if (BE (pstr->trans != NULL, 0))
-	      ch = pstr->trans [ch];
-	    pstr->mbs[byte_idx] = ch;
-
-	    if (BE (pstr->offsets_needed != 0, 0))
-	      pstr->offsets[byte_idx] = src_idx;
-	    ++src_idx;
-
-	    /* And also cast it to wide char.  */
-	    pstr->wcs[byte_idx++] = (wchar_t) ch;
-	    if (BE (mbclen == (size_t) -1, 0))
-	      pstr->cur_state = prev_st;
-	  }
-	else
-	  {
-	    /* The buffer doesn't have enough space, finish to build.  */
-	    pstr->cur_state = prev_st;
-	    break;
-	  }
-      }
-  pstr->valid_len = byte_idx;
-  pstr->valid_raw_len = src_idx;
-  return REG_NOERROR;
-}
-
-/* Skip characters until the index becomes greater than NEW_RAW_IDX.
-   Return the index.  */
-
-static int
-internal_function
-re_string_skip_chars (re_string_t *pstr, int new_raw_idx, wint_t *last_wc)
-{
-  mbstate_t prev_st;
-  int rawbuf_idx;
-  size_t mbclen;
-  wchar_t wc = WEOF;
-
-  /* Skip the characters which are not necessary to check.  */
-  for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_raw_len;
-       rawbuf_idx < new_raw_idx;)
-    {
-      int remain_len;
-      remain_len = pstr->len - rawbuf_idx;
-      prev_st = pstr->cur_state;
-      mbclen = __mbrtowc (&wc, (const char *) pstr->raw_mbs + rawbuf_idx,
-			  remain_len, &pstr->cur_state);
-      if (BE (mbclen == (size_t) -2 || mbclen == (size_t) -1 || mbclen == 0, 0))
-	{
-	  /* We treat these cases as a single byte character.  */
-	  if (mbclen == 0 || remain_len == 0)
-	    wc = L'\0';
-	  else
-	    wc = *(unsigned char *) (pstr->raw_mbs + rawbuf_idx);
-	  mbclen = 1;
-	  pstr->cur_state = prev_st;
-	}
-      /* Then proceed the next character.  */
-      rawbuf_idx += mbclen;
-    }
-  *last_wc = (wint_t) wc;
-  return rawbuf_idx;
-}
-#endif /* RE_ENABLE_I18N  */
-
-/* Build the buffer PSTR->MBS, and apply the translation if we need.
-   This function is used in case of REG_ICASE.  */
-
-static void
-internal_function
-build_upper_buffer (re_string_t *pstr)
-{
-  int char_idx, end_idx;
-  end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
-
-  for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx)
-    {
-      int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx];
-      if (BE (pstr->trans != NULL, 0))
-	ch = pstr->trans[ch];
-      if (islower (ch))
-	pstr->mbs[char_idx] = toupper (ch);
-      else
-	pstr->mbs[char_idx] = ch;
-    }
-  pstr->valid_len = char_idx;
-  pstr->valid_raw_len = char_idx;
-}
-
-/* Apply TRANS to the buffer in PSTR.  */
-
-static void
-internal_function
-re_string_translate_buffer (re_string_t *pstr)
-{
-  int buf_idx, end_idx;
-  end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
-
-  for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx)
-    {
-      int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx];
-      pstr->mbs[buf_idx] = pstr->trans[ch];
-    }
-
-  pstr->valid_len = buf_idx;
-  pstr->valid_raw_len = buf_idx;
-}
-
-/* This function re-construct the buffers.
-   Concretely, convert to wide character in case of pstr->mb_cur_max > 1,
-   convert to upper case in case of REG_ICASE, apply translation.  */
-
-static reg_errcode_t
-internal_function
-re_string_reconstruct (re_string_t *pstr, int idx, int eflags)
-{
-  int offset = idx - pstr->raw_mbs_idx;
-  if (BE (offset < 0, 0))
-    {
-      /* Reset buffer.  */
-#ifdef RE_ENABLE_I18N
-      if (pstr->mb_cur_max > 1)
-	memset (&pstr->cur_state, '\0', sizeof (mbstate_t));
-#endif /* RE_ENABLE_I18N */
-      pstr->len = pstr->raw_len;
-      pstr->stop = pstr->raw_stop;
-      pstr->valid_len = 0;
-      pstr->raw_mbs_idx = 0;
-      pstr->valid_raw_len = 0;
-      pstr->offsets_needed = 0;
-      pstr->tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF
-			   : CONTEXT_NEWLINE | CONTEXT_BEGBUF);
-      if (!pstr->mbs_allocated)
-	pstr->mbs = (unsigned char *) pstr->raw_mbs;
-      offset = idx;
-    }
-
-  if (BE (offset != 0, 1))
-    {
-      /* Should the already checked characters be kept?  */
-      if (BE (offset < pstr->valid_raw_len, 1))
-	{
-	  /* Yes, move them to the front of the buffer.  */
-#ifdef RE_ENABLE_I18N
-	  if (BE (pstr->offsets_needed, 0))
-	    {
-	      int low = 0, high = pstr->valid_len, mid;
-	      do
-		{
-		  mid = (high + low) / 2;
-		  if (pstr->offsets[mid] > offset)
-		    high = mid;
-		  else if (pstr->offsets[mid] < offset)
-		    low = mid + 1;
-		  else
-		    break;
-		}
-	      while (low < high);
-	      if (pstr->offsets[mid] < offset)
-		++mid;
-	      pstr->tip_context = re_string_context_at (pstr, mid - 1,
-							eflags);
-	      /* This can be quite complicated, so handle specially
-		 only the common and easy case where the character with
-		 different length representation of lower and upper
-		 case is present at or after offset.  */
-	      if (pstr->valid_len > offset
-		  && mid == offset && pstr->offsets[mid] == offset)
-		{
-		  memmove (pstr->wcs, pstr->wcs + offset,
-			   (pstr->valid_len - offset) * sizeof (wint_t));
-		  memmove (pstr->mbs, pstr->mbs + offset, pstr->valid_len - offset);
-		  pstr->valid_len -= offset;
-		  pstr->valid_raw_len -= offset;
-		  for (low = 0; low < pstr->valid_len; low++)
-		    pstr->offsets[low] = pstr->offsets[low + offset] - offset;
-		}
-	      else
-		{
-		  /* Otherwise, just find out how long the partial multibyte
-		     character at offset is and fill it with WEOF/255.  */
-		  pstr->len = pstr->raw_len - idx + offset;
-		  pstr->stop = pstr->raw_stop - idx + offset;
-		  pstr->offsets_needed = 0;
-		  while (mid > 0 && pstr->offsets[mid - 1] == offset)
-		    --mid;
-		  while (mid < pstr->valid_len)
-		    if (pstr->wcs[mid] != WEOF)
-		      break;
-		    else
-		      ++mid;
-		  if (mid == pstr->valid_len)
-		    pstr->valid_len = 0;
-		  else
-		    {
-		      pstr->valid_len = pstr->offsets[mid] - offset;
-		      if (pstr->valid_len)
-			{
-			  for (low = 0; low < pstr->valid_len; ++low)
-			    pstr->wcs[low] = WEOF;
-			  memset (pstr->mbs, 255, pstr->valid_len);
-			}
-		    }
-		  pstr->valid_raw_len = pstr->valid_len;
-		}
-	    }
-	  else
-#endif
-	    {
-	      pstr->tip_context = re_string_context_at (pstr, offset - 1,
-							eflags);
-#ifdef RE_ENABLE_I18N
-	      if (pstr->mb_cur_max > 1)
-		memmove (pstr->wcs, pstr->wcs + offset,
-			 (pstr->valid_len - offset) * sizeof (wint_t));
-#endif /* RE_ENABLE_I18N */
-	      if (BE (pstr->mbs_allocated, 0))
-		memmove (pstr->mbs, pstr->mbs + offset,
-			 pstr->valid_len - offset);
-	      pstr->valid_len -= offset;
-	      pstr->valid_raw_len -= offset;
-#if DEBUG
-	      assert (pstr->valid_len > 0);
-#endif
-	    }
-	}
-      else
-	{
-	  /* No, skip all characters until IDX.  */
-	  int prev_valid_len = pstr->valid_len;
-
-#ifdef RE_ENABLE_I18N
-	  if (BE (pstr->offsets_needed, 0))
-	    {
-	      pstr->len = pstr->raw_len - idx + offset;
-	      pstr->stop = pstr->raw_stop - idx + offset;
-	      pstr->offsets_needed = 0;
-	    }
-#endif
-	  pstr->valid_len = 0;
-#ifdef RE_ENABLE_I18N
-	  if (pstr->mb_cur_max > 1)
-	    {
-	      int wcs_idx;
-	      wint_t wc = WEOF;
-
-	      if (pstr->is_utf8)
-		{
-		  const unsigned char *raw, *p, *q, *end;
-
-		  /* Special case UTF-8.  Multi-byte chars start with any
-		     byte other than 0x80 - 0xbf.  */
-		  raw = pstr->raw_mbs + pstr->raw_mbs_idx;
-		  end = raw + (offset - pstr->mb_cur_max);
-		  if (end < pstr->raw_mbs)
-		    end = pstr->raw_mbs;
-		  p = raw + offset - 1;
-#ifdef _LIBC
-		  /* We know the wchar_t encoding is UCS4, so for the simple
-		     case, ASCII characters, skip the conversion step.  */
-		  if (isascii (*p) && BE (pstr->trans == NULL, 1))
-		    {
-		      memset (&pstr->cur_state, '\0', sizeof (mbstate_t));
-		      /* pstr->valid_len = 0; */
-		      wc = (wchar_t) *p;
-		    }
-		  else
-#endif
-		    for (; p >= end; --p)
-		      if ((*p & 0xc0) != 0x80)
-			{
-			  mbstate_t cur_state;
-			  wchar_t wc2;
-			  int mlen = raw + pstr->len - p;
-			  unsigned char buf[6];
-			  size_t mbclen;
-
-			  q = p;
-			  if (BE (pstr->trans != NULL, 0))
-			    {
-			      int i = mlen < 6 ? mlen : 6;
-			      while (--i >= 0)
-				buf[i] = pstr->trans[p[i]];
-			      q = buf;
-			    }
-			  /* XXX Don't use mbrtowc, we know which conversion
-			     to use (UTF-8 -> UCS4).  */
-			  memset (&cur_state, 0, sizeof (cur_state));
-			  mbclen = __mbrtowc (&wc2, (const char *) p, mlen,
-					      &cur_state);
-			  if (raw + offset - p <= mbclen
-			      && mbclen < (size_t) -2)
-			    {
-			      memset (&pstr->cur_state, '\0',
-				      sizeof (mbstate_t));
-			      pstr->valid_len = mbclen - (raw + offset - p);
-			      wc = wc2;
-			    }
-			  break;
-			}
-		}
-
-	      if (wc == WEOF)
-		pstr->valid_len = re_string_skip_chars (pstr, idx, &wc) - idx;
-	      if (wc == WEOF)
-		pstr->tip_context
-		  = re_string_context_at (pstr, prev_valid_len - 1, eflags);
-	      else
-		pstr->tip_context = ((BE (pstr->word_ops_used != 0, 0)
-				      && IS_WIDE_WORD_CHAR (wc))
-				     ? CONTEXT_WORD
-				     : ((IS_WIDE_NEWLINE (wc)
-					 && pstr->newline_anchor)
-					? CONTEXT_NEWLINE : 0));
-	      if (BE (pstr->valid_len, 0))
-		{
-		  for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx)
-		    pstr->wcs[wcs_idx] = WEOF;
-		  if (pstr->mbs_allocated)
-		    memset (pstr->mbs, 255, pstr->valid_len);
-		}
-	      pstr->valid_raw_len = pstr->valid_len;
-	    }
-	  else
-#endif /* RE_ENABLE_I18N */
-	    {
-	      int c = pstr->raw_mbs[pstr->raw_mbs_idx + offset - 1];
-	      pstr->valid_raw_len = 0;
-	      if (pstr->trans)
-		c = pstr->trans[c];
-	      pstr->tip_context = (bitset_contain (pstr->word_char, c)
-				   ? CONTEXT_WORD
-				   : ((IS_NEWLINE (c) && pstr->newline_anchor)
-				      ? CONTEXT_NEWLINE : 0));
-	    }
-	}
-      if (!BE (pstr->mbs_allocated, 0))
-	pstr->mbs += offset;
-    }
-  pstr->raw_mbs_idx = idx;
-  pstr->len -= offset;
-  pstr->stop -= offset;
-
-  /* Then build the buffers.  */
-#ifdef RE_ENABLE_I18N
-  if (pstr->mb_cur_max > 1)
-    {
-      if (pstr->icase)
-	{
-	  reg_errcode_t ret = build_wcs_upper_buffer (pstr);
-	  if (BE (ret != REG_NOERROR, 0))
-	    return ret;
-	}
-      else
-	build_wcs_buffer (pstr);
-    }
-  else
-#endif /* RE_ENABLE_I18N */
-    if (BE (pstr->mbs_allocated, 0))
-      {
-	if (pstr->icase)
-	  build_upper_buffer (pstr);
-	else if (pstr->trans != NULL)
-	  re_string_translate_buffer (pstr);
-      }
-    else
-      pstr->valid_len = pstr->len;
-
-  pstr->cur_idx = 0;
-  return REG_NOERROR;
-}
-
-static unsigned char
-internal_function __attribute ((pure))
-re_string_peek_byte_case (const re_string_t *pstr, int idx)
-{
-  int ch, off;
-
-  /* Handle the common (easiest) cases first.  */
-  if (BE (!pstr->mbs_allocated, 1))
-    return re_string_peek_byte (pstr, idx);
-
-#ifdef RE_ENABLE_I18N
-  if (pstr->mb_cur_max > 1
-      && ! re_string_is_single_byte_char (pstr, pstr->cur_idx + idx))
-    return re_string_peek_byte (pstr, idx);
-#endif
-
-  off = pstr->cur_idx + idx;
-#ifdef RE_ENABLE_I18N
-  if (pstr->offsets_needed)
-    off = pstr->offsets[off];
-#endif
-
-  ch = pstr->raw_mbs[pstr->raw_mbs_idx + off];
-
-#ifdef RE_ENABLE_I18N
-  /* Ensure that e.g. for tr_TR.UTF-8 BACKSLASH DOTLESS SMALL LETTER I
-     this function returns CAPITAL LETTER I instead of first byte of
-     DOTLESS SMALL LETTER I.  The latter would confuse the parser,
-     since peek_byte_case doesn't advance cur_idx in any way.  */
-  if (pstr->offsets_needed && !isascii (ch))
-    return re_string_peek_byte (pstr, idx);
-#endif
-
-  return ch;
-}
-
-static unsigned char
-internal_function __attribute ((pure))
-re_string_fetch_byte_case (re_string_t *pstr)
-{
-  if (BE (!pstr->mbs_allocated, 1))
-    return re_string_fetch_byte (pstr);
-
-#ifdef RE_ENABLE_I18N
-  if (pstr->offsets_needed)
-    {
-      int off, ch;
-
-      /* For tr_TR.UTF-8 [[:islower:]] there is
-	 [[: CAPITAL LETTER I WITH DOT lower:]] in mbs.  Skip
-	 in that case the whole multi-byte character and return
-	 the original letter.  On the other side, with
-	 [[: DOTLESS SMALL LETTER I return [[:I, as doing
-	 anything else would complicate things too much.  */
-
-      if (!re_string_first_byte (pstr, pstr->cur_idx))
-	return re_string_fetch_byte (pstr);
-
-      off = pstr->offsets[pstr->cur_idx];
-      ch = pstr->raw_mbs[pstr->raw_mbs_idx + off];
-
-      if (! isascii (ch))
-	return re_string_fetch_byte (pstr);
-
-      re_string_skip_bytes (pstr,
-			    re_string_char_size_at (pstr, pstr->cur_idx));
-      return ch;
-    }
-#endif
-
-  return pstr->raw_mbs[pstr->raw_mbs_idx + pstr->cur_idx++];
-}
-
-static void
-internal_function
-re_string_destruct (re_string_t *pstr)
-{
-#ifdef RE_ENABLE_I18N
-  re_free (pstr->wcs);
-  re_free (pstr->offsets);
-#endif /* RE_ENABLE_I18N  */
-  if (pstr->mbs_allocated)
-    re_free (pstr->mbs);
-}
-
-/* Return the context at IDX in INPUT.  */
-
-static unsigned int
-internal_function
-re_string_context_at (const re_string_t *input, int idx, int eflags)
-{
-  int c;
-  if (BE (idx < 0, 0))
-    /* In this case, we use the value stored in input->tip_context,
-       since we can't know the character in input->mbs[-1] here.  */
-    return input->tip_context;
-  if (BE (idx == input->len, 0))
-    return ((eflags & REG_NOTEOL) ? CONTEXT_ENDBUF
-	    : CONTEXT_NEWLINE | CONTEXT_ENDBUF);
-#ifdef RE_ENABLE_I18N
-  if (input->mb_cur_max > 1)
-    {
-      wint_t wc;
-      int wc_idx = idx;
-      while(input->wcs[wc_idx] == WEOF)
-	{
-#ifdef DEBUG
-	  /* It must not happen.  */
-	  assert (wc_idx >= 0);
-#endif
-	  --wc_idx;
-	  if (wc_idx < 0)
-	    return input->tip_context;
-	}
-      wc = input->wcs[wc_idx];
-      if (BE (input->word_ops_used != 0, 0) && IS_WIDE_WORD_CHAR (wc))
-	return CONTEXT_WORD;
-      return (IS_WIDE_NEWLINE (wc) && input->newline_anchor
-	      ? CONTEXT_NEWLINE : 0);
-    }
-  else
-#endif
-    {
-      c = re_string_byte_at (input, idx);
-      if (bitset_contain (input->word_char, c))
-	return CONTEXT_WORD;
-      return IS_NEWLINE (c) && input->newline_anchor ? CONTEXT_NEWLINE : 0;
-    }
-}
-
-/* Functions for set operation.  */
-
-static reg_errcode_t
-internal_function
-re_node_set_alloc (re_node_set *set, int size)
-{
-  set->alloc = size;
-  set->nelem = 0;
-  set->elems = re_malloc (int, size);
-  if (BE (set->elems == NULL, 0))
-    return REG_ESPACE;
-  return REG_NOERROR;
-}
-
-static reg_errcode_t
-internal_function
-re_node_set_init_1 (re_node_set *set, int elem)
-{
-  set->alloc = 1;
-  set->nelem = 1;
-  set->elems = re_malloc (int, 1);
-  if (BE (set->elems == NULL, 0))
-    {
-      set->alloc = set->nelem = 0;
-      return REG_ESPACE;
-    }
-  set->elems[0] = elem;
-  return REG_NOERROR;
-}
-
-static reg_errcode_t
-internal_function
-re_node_set_init_2 (re_node_set *set, int elem1, int elem2)
-{
-  set->alloc = 2;
-  set->elems = re_malloc (int, 2);
-  if (BE (set->elems == NULL, 0))
-    return REG_ESPACE;
-  if (elem1 == elem2)
-    {
-      set->nelem = 1;
-      set->elems[0] = elem1;
-    }
-  else
-    {
-      set->nelem = 2;
-      if (elem1 < elem2)
-	{
-	  set->elems[0] = elem1;
-	  set->elems[1] = elem2;
-	}
-      else
-	{
-	  set->elems[0] = elem2;
-	  set->elems[1] = elem1;
-	}
-    }
-  return REG_NOERROR;
-}
-
-static reg_errcode_t
-internal_function
-re_node_set_init_copy (re_node_set *dest, const re_node_set *src)
-{
-  dest->nelem = src->nelem;
-  if (src->nelem > 0)
-    {
-      dest->alloc = dest->nelem;
-      dest->elems = re_malloc (int, dest->alloc);
-      if (BE (dest->elems == NULL, 0))
-	{
-	  dest->alloc = dest->nelem = 0;
-	  return REG_ESPACE;
-	}
-      memcpy (dest->elems, src->elems, src->nelem * sizeof (int));
-    }
-  else
-    re_node_set_init_empty (dest);
-  return REG_NOERROR;
-}
-
-/* Calculate the intersection of the sets SRC1 and SRC2. And merge it to
-   DEST. Return value indicate the error code or REG_NOERROR if succeeded.
-   Note: We assume dest->elems is NULL, when dest->alloc is 0.  */
-
-static reg_errcode_t
-internal_function
-re_node_set_add_intersect (re_node_set *dest, const re_node_set *src1,
-			   const re_node_set *src2)
-{
-  int i1, i2, is, id, delta, sbase;
-  if (src1->nelem == 0 || src2->nelem == 0)
-    return REG_NOERROR;
-
-  /* We need dest->nelem + 2 * elems_in_intersection; this is a
-     conservative estimate.  */
-  if (src1->nelem + src2->nelem + dest->nelem > dest->alloc)
-    {
-      int new_alloc = src1->nelem + src2->nelem + dest->alloc;
-      int *new_elems = re_realloc (dest->elems, int, new_alloc);
-      if (BE (new_elems == NULL, 0))
-        return REG_ESPACE;
-      dest->elems = new_elems;
-      dest->alloc = new_alloc;
-    }
-
-  /* Find the items in the intersection of SRC1 and SRC2, and copy
-     into the top of DEST those that are not already in DEST itself.  */
-  sbase = dest->nelem + src1->nelem + src2->nelem;
-  i1 = src1->nelem - 1;
-  i2 = src2->nelem - 1;
-  id = dest->nelem - 1;
-  for (;;)
-    {
-      if (src1->elems[i1] == src2->elems[i2])
-	{
-	  /* Try to find the item in DEST.  Maybe we could binary search?  */
-	  while (id >= 0 && dest->elems[id] > src1->elems[i1])
-	    --id;
-
-          if (id < 0 || dest->elems[id] != src1->elems[i1])
-            dest->elems[--sbase] = src1->elems[i1];
-
-	  if (--i1 < 0 || --i2 < 0)
-	    break;
-	}
-
-      /* Lower the highest of the two items.  */
-      else if (src1->elems[i1] < src2->elems[i2])
-	{
-	  if (--i2 < 0)
-	    break;
-	}
-      else
-	{
-	  if (--i1 < 0)
-	    break;
-	}
-    }
-
-  id = dest->nelem - 1;
-  is = dest->nelem + src1->nelem + src2->nelem - 1;
-  delta = is - sbase + 1;
-
-  /* Now copy.  When DELTA becomes zero, the remaining
-     DEST elements are already in place; this is more or
-     less the same loop that is in re_node_set_merge.  */
-  dest->nelem += delta;
-  if (delta > 0 && id >= 0)
-    for (;;)
-      {
-        if (dest->elems[is] > dest->elems[id])
-          {
-            /* Copy from the top.  */
-            dest->elems[id + delta--] = dest->elems[is--];
-            if (delta == 0)
-              break;
-          }
-        else
-          {
-            /* Slide from the bottom.  */
-            dest->elems[id + delta] = dest->elems[id];
-            if (--id < 0)
-              break;
-          }
-      }
-
-  /* Copy remaining SRC elements.  */
-  memcpy (dest->elems, dest->elems + sbase, delta * sizeof (int));
-
-  return REG_NOERROR;
-}
-
-/* Calculate the union set of the sets SRC1 and SRC2. And store it to
-   DEST. Return value indicate the error code or REG_NOERROR if succeeded.  */
-
-static reg_errcode_t
-internal_function
-re_node_set_init_union (re_node_set *dest, const re_node_set *src1,
-			const re_node_set *src2)
-{
-  int i1, i2, id;
-  if (src1 != NULL && src1->nelem > 0 && src2 != NULL && src2->nelem > 0)
-    {
-      dest->alloc = src1->nelem + src2->nelem;
-      dest->elems = re_malloc (int, dest->alloc);
-      if (BE (dest->elems == NULL, 0))
-	return REG_ESPACE;
-    }
-  else
-    {
-      if (src1 != NULL && src1->nelem > 0)
-	return re_node_set_init_copy (dest, src1);
-      else if (src2 != NULL && src2->nelem > 0)
-	return re_node_set_init_copy (dest, src2);
-      else
-	re_node_set_init_empty (dest);
-      return REG_NOERROR;
-    }
-  for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;)
-    {
-      if (src1->elems[i1] > src2->elems[i2])
-	{
-	  dest->elems[id++] = src2->elems[i2++];
-	  continue;
-	}
-      if (src1->elems[i1] == src2->elems[i2])
-	++i2;
-      dest->elems[id++] = src1->elems[i1++];
-    }
-  if (i1 < src1->nelem)
-    {
-      memcpy (dest->elems + id, src1->elems + i1,
-	     (src1->nelem - i1) * sizeof (int));
-      id += src1->nelem - i1;
-    }
-  else if (i2 < src2->nelem)
-    {
-      memcpy (dest->elems + id, src2->elems + i2,
-	     (src2->nelem - i2) * sizeof (int));
-      id += src2->nelem - i2;
-    }
-  dest->nelem = id;
-  return REG_NOERROR;
-}
-
-/* Calculate the union set of the sets DEST and SRC. And store it to
-   DEST. Return value indicate the error code or REG_NOERROR if succeeded.  */
-
-static reg_errcode_t
-internal_function
-re_node_set_merge (re_node_set *dest, const re_node_set *src)
-{
-  int is, id, sbase, delta;
-  if (src == NULL || src->nelem == 0)
-    return REG_NOERROR;
-  if (dest->alloc < 2 * src->nelem + dest->nelem)
-    {
-      int new_alloc = 2 * (src->nelem + dest->alloc);
-      int *new_buffer = re_realloc (dest->elems, int, new_alloc);
-      if (BE (new_buffer == NULL, 0))
-	return REG_ESPACE;
-      dest->elems = new_buffer;
-      dest->alloc = new_alloc;
-    }
-
-  if (BE (dest->nelem == 0, 0))
-    {
-      dest->nelem = src->nelem;
-      memcpy (dest->elems, src->elems, src->nelem * sizeof (int));
-      return REG_NOERROR;
-    }
-
-  /* Copy into the top of DEST the items of SRC that are not
-     found in DEST.  Maybe we could binary search in DEST?  */
-  for (sbase = dest->nelem + 2 * src->nelem,
-       is = src->nelem - 1, id = dest->nelem - 1; is >= 0 && id >= 0; )
-    {
-      if (dest->elems[id] == src->elems[is])
-        is--, id--;
-      else if (dest->elems[id] < src->elems[is])
-        dest->elems[--sbase] = src->elems[is--];
-      else /* if (dest->elems[id] > src->elems[is]) */
-        --id;
-    }
-
-  if (is >= 0)
-    {
-      /* If DEST is exhausted, the remaining items of SRC must be unique.  */
-      sbase -= is + 1;
-      memcpy (dest->elems + sbase, src->elems, (is + 1) * sizeof (int));
-    }
-
-  id = dest->nelem - 1;
-  is = dest->nelem + 2 * src->nelem - 1;
-  delta = is - sbase + 1;
-  if (delta == 0)
-    return REG_NOERROR;
-
-  /* Now copy.  When DELTA becomes zero, the remaining
-     DEST elements are already in place.  */
-  dest->nelem += delta;
-  for (;;)
-    {
-      if (dest->elems[is] > dest->elems[id])
-        {
-	  /* Copy from the top.  */
-          dest->elems[id + delta--] = dest->elems[is--];
-	  if (delta == 0)
-	    break;
-	}
-      else
-        {
-          /* Slide from the bottom.  */
-          dest->elems[id + delta] = dest->elems[id];
-	  if (--id < 0)
-	    {
-	      /* Copy remaining SRC elements.  */
-	      memcpy (dest->elems, dest->elems + sbase,
-	              delta * sizeof (int));
-	      break;
-	    }
-	}
-    }
-
-  return REG_NOERROR;
-}
-
-/* Insert the new element ELEM to the re_node_set* SET.
-   SET should not already have ELEM.
-   return -1 if an error is occured, return 1 otherwise.  */
-
-static int
-internal_function
-re_node_set_insert (re_node_set *set, int elem)
-{
-  int idx;
-  /* In case the set is empty.  */
-  if (set->alloc == 0)
-    {
-      if (BE (re_node_set_init_1 (set, elem) == REG_NOERROR, 1))
-	return 1;
-      else
-	return -1;
-    }
-
-  if (BE (set->nelem, 0) == 0)
-    {
-      /* We already guaranteed above that set->alloc != 0.  */
-      set->elems[0] = elem;
-      ++set->nelem;
-      return 1;
-    }
-
-  /* Realloc if we need.  */
-  if (set->alloc == set->nelem)
-    {
-      int *new_elems;
-      set->alloc = set->alloc * 2;
-      new_elems = re_realloc (set->elems, int, set->alloc);
-      if (BE (new_elems == NULL, 0))
-	return -1;
-      set->elems = new_elems;
-    }
-
-  /* Move the elements which follows the new element.  Test the
-     first element separately to skip a check in the inner loop.  */
-  if (elem < set->elems[0])
-    {
-      idx = 0;
-      for (idx = set->nelem; idx > 0; idx--)
-        set->elems[idx] = set->elems[idx - 1];
-    }
-  else
-    {
-      for (idx = set->nelem; set->elems[idx - 1] > elem; idx--)
-        set->elems[idx] = set->elems[idx - 1];
-    }
-
-  /* Insert the new element.  */
-  set->elems[idx] = elem;
-  ++set->nelem;
-  return 1;
-}
-
-/* Insert the new element ELEM to the re_node_set* SET.
-   SET should not already have any element greater than or equal to ELEM.
-   Return -1 if an error is occured, return 1 otherwise.  */
-
-static int
-internal_function
-re_node_set_insert_last (re_node_set *set, int elem)
-{
-  /* Realloc if we need.  */
-  if (set->alloc == set->nelem)
-    {
-      int *new_elems;
-      set->alloc = (set->alloc + 1) * 2;
-      new_elems = re_realloc (set->elems, int, set->alloc);
-      if (BE (new_elems == NULL, 0))
-	return -1;
-      set->elems = new_elems;
-    }
-
-  /* Insert the new element.  */
-  set->elems[set->nelem++] = elem;
-  return 1;
-}
-
-/* Compare two node sets SET1 and SET2.
-   return 1 if SET1 and SET2 are equivalent, return 0 otherwise.  */
-
-static int
-internal_function __attribute ((pure))
-re_node_set_compare (const re_node_set *set1, const re_node_set *set2)
-{
-  int i;
-  if (set1 == NULL || set2 == NULL || set1->nelem != set2->nelem)
-    return 0;
-  for (i = set1->nelem ; --i >= 0 ; )
-    if (set1->elems[i] != set2->elems[i])
-      return 0;
-  return 1;
-}
-
-/* Return (idx + 1) if SET contains the element ELEM, return 0 otherwise.  */
-
-static int
-internal_function __attribute ((pure))
-re_node_set_contains (const re_node_set *set, int elem)
-{
-  unsigned int idx, right, mid;
-  if (set->nelem <= 0)
-    return 0;
-
-  /* Binary search the element.  */
-  idx = 0;
-  right = set->nelem - 1;
-  while (idx < right)
-    {
-      mid = (idx + right) / 2;
-      if (set->elems[mid] < elem)
-	idx = mid + 1;
-      else
-	right = mid;
-    }
-  return set->elems[idx] == elem ? idx + 1 : 0;
-}
-
-static void
-internal_function
-re_node_set_remove_at (re_node_set *set, int idx)
-{
-  if (idx < 0 || idx >= set->nelem)
-    return;
-  --set->nelem;
-  for (; idx < set->nelem; idx++)
-    set->elems[idx] = set->elems[idx + 1];
-}
-
-
-/* Add the token TOKEN to dfa->nodes, and return the index of the token.
-   Or return -1, if an error will be occured.  */
-
-static int
-internal_function
-re_dfa_add_node (re_dfa_t *dfa, re_token_t token)
-{
-  int type = token.type;
-  if (BE (dfa->nodes_len >= dfa->nodes_alloc, 0))
-    {
-      size_t new_nodes_alloc = dfa->nodes_alloc * 2;
-      int *new_nexts, *new_indices;
-      re_node_set *new_edests, *new_eclosures;
-      re_token_t *new_nodes;
-
-      /* Avoid overflows.  */
-      if (BE (new_nodes_alloc < dfa->nodes_alloc, 0))
-	return -1;
-
-      new_nodes = re_realloc (dfa->nodes, re_token_t, new_nodes_alloc);
-      if (BE (new_nodes == NULL, 0))
-	return -1;
-      dfa->nodes = new_nodes;
-      new_nexts = re_realloc (dfa->nexts, int, new_nodes_alloc);
-      new_indices = re_realloc (dfa->org_indices, int, new_nodes_alloc);
-      new_edests = re_realloc (dfa->edests, re_node_set, new_nodes_alloc);
-      new_eclosures = re_realloc (dfa->eclosures, re_node_set, new_nodes_alloc);
-      if (BE (new_nexts == NULL || new_indices == NULL
-	      || new_edests == NULL || new_eclosures == NULL, 0))
-	return -1;
-      dfa->nexts = new_nexts;
-      dfa->org_indices = new_indices;
-      dfa->edests = new_edests;
-      dfa->eclosures = new_eclosures;
-      dfa->nodes_alloc = new_nodes_alloc;
-    }
-  dfa->nodes[dfa->nodes_len] = token;
-  dfa->nodes[dfa->nodes_len].constraint = 0;
-#ifdef RE_ENABLE_I18N
-  dfa->nodes[dfa->nodes_len].accept_mb =
-    (type == OP_PERIOD && dfa->mb_cur_max > 1) || type == COMPLEX_BRACKET;
-#endif
-  dfa->nexts[dfa->nodes_len] = -1;
-  re_node_set_init_empty (dfa->edests + dfa->nodes_len);
-  re_node_set_init_empty (dfa->eclosures + dfa->nodes_len);
-  return dfa->nodes_len++;
-}
-
-static inline unsigned int
-internal_function
-calc_state_hash (const re_node_set *nodes, unsigned int context)
-{
-  unsigned int hash = nodes->nelem + context;
-  int i;
-  for (i = 0 ; i < nodes->nelem ; i++)
-    hash += nodes->elems[i];
-  return hash;
-}
-
-/* Search for the state whose node_set is equivalent to NODES.
-   Return the pointer to the state, if we found it in the DFA.
-   Otherwise create the new one and return it.  In case of an error
-   return NULL and set the error code in ERR.
-   Note: - We assume NULL as the invalid state, then it is possible that
-	   return value is NULL and ERR is REG_NOERROR.
-	 - We never return non-NULL value in case of any errors, it is for
-	   optimization.  */
-
-static re_dfastate_t *
-internal_function
-re_acquire_state (reg_errcode_t *err, const re_dfa_t *dfa,
-		  const re_node_set *nodes)
-{
-  unsigned int hash;
-  re_dfastate_t *new_state;
-  struct re_state_table_entry *spot;
-  int i;
-  if (BE (nodes->nelem == 0, 0))
-    {
-      *err = REG_NOERROR;
-      return NULL;
-    }
-  hash = calc_state_hash (nodes, 0);
-  spot = dfa->state_table + (hash & dfa->state_hash_mask);
-
-  for (i = 0 ; i < spot->num ; i++)
-    {
-      re_dfastate_t *state = spot->array[i];
-      if (hash != state->hash)
-	continue;
-      if (re_node_set_compare (&state->nodes, nodes))
-	return state;
-    }
-
-  /* There are no appropriate state in the dfa, create the new one.  */
-  new_state = create_ci_newstate (dfa, nodes, hash);
-  if (BE (new_state == NULL, 0))
-    *err = REG_ESPACE;
-
-  return new_state;
-}
-
-/* Search for the state whose node_set is equivalent to NODES and
-   whose context is equivalent to CONTEXT.
-   Return the pointer to the state, if we found it in the DFA.
-   Otherwise create the new one and return it.  In case of an error
-   return NULL and set the error code in ERR.
-   Note: - We assume NULL as the invalid state, then it is possible that
-	   return value is NULL and ERR is REG_NOERROR.
-	 - We never return non-NULL value in case of any errors, it is for
-	   optimization.  */
-
-static re_dfastate_t *
-internal_function
-re_acquire_state_context (reg_errcode_t *err, const re_dfa_t *dfa,
-			  const re_node_set *nodes, unsigned int context)
-{
-  unsigned int hash;
-  re_dfastate_t *new_state;
-  struct re_state_table_entry *spot;
-  int i;
-  if (nodes->nelem == 0)
-    {
-      *err = REG_NOERROR;
-      return NULL;
-    }
-  hash = calc_state_hash (nodes, context);
-  spot = dfa->state_table + (hash & dfa->state_hash_mask);
-
-  for (i = 0 ; i < spot->num ; i++)
-    {
-      re_dfastate_t *state = spot->array[i];
-      if (state->hash == hash
-	  && state->context == context
-	  && re_node_set_compare (state->entrance_nodes, nodes))
-	return state;
-    }
-  /* There are no appropriate state in `dfa', create the new one.  */
-  new_state = create_cd_newstate (dfa, nodes, context, hash);
-  if (BE (new_state == NULL, 0))
-    *err = REG_ESPACE;
-
-  return new_state;
-}
-
-/* Finish initialization of the new state NEWSTATE, and using its hash value
-   HASH put in the appropriate bucket of DFA's state table.  Return value
-   indicates the error code if failed.  */
-
-static reg_errcode_t
-register_state (const re_dfa_t *dfa, re_dfastate_t *newstate,
-		unsigned int hash)
-{
-  struct re_state_table_entry *spot;
-  reg_errcode_t err;
-  int i;
-
-  newstate->hash = hash;
-  err = re_node_set_alloc (&newstate->non_eps_nodes, newstate->nodes.nelem);
-  if (BE (err != REG_NOERROR, 0))
-    return REG_ESPACE;
-  for (i = 0; i < newstate->nodes.nelem; i++)
-    {
-      int elem = newstate->nodes.elems[i];
-      if (!IS_EPSILON_NODE (dfa->nodes[elem].type))
-        re_node_set_insert_last (&newstate->non_eps_nodes, elem);
-    }
-
-  spot = dfa->state_table + (hash & dfa->state_hash_mask);
-  if (BE (spot->alloc <= spot->num, 0))
-    {
-      int new_alloc = 2 * spot->num + 2;
-      re_dfastate_t **new_array = re_realloc (spot->array, re_dfastate_t *,
-					      new_alloc);
-      if (BE (new_array == NULL, 0))
-	return REG_ESPACE;
-      spot->array = new_array;
-      spot->alloc = new_alloc;
-    }
-  spot->array[spot->num++] = newstate;
-  return REG_NOERROR;
-}
-
-static void
-free_state (re_dfastate_t *state)
-{
-  re_node_set_free (&state->non_eps_nodes);
-  re_node_set_free (&state->inveclosure);
-  if (state->entrance_nodes != &state->nodes)
-    {
-      re_node_set_free (state->entrance_nodes);
-      re_free (state->entrance_nodes);
-    }
-  re_node_set_free (&state->nodes);
-  re_free (state->word_trtable);
-  re_free (state->trtable);
-  re_free (state);
-}
-
-/* Create the new state which is independ of contexts.
-   Return the new state if succeeded, otherwise return NULL.  */
-
-static re_dfastate_t *
-internal_function
-create_ci_newstate (const re_dfa_t *dfa, const re_node_set *nodes,
-		    unsigned int hash)
-{
-  int i;
-  reg_errcode_t err;
-  re_dfastate_t *newstate;
-
-  newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1);
-  if (BE (newstate == NULL, 0))
-    return NULL;
-  err = re_node_set_init_copy (&newstate->nodes, nodes);
-  if (BE (err != REG_NOERROR, 0))
-    {
-      re_free (newstate);
-      return NULL;
-    }
-
-  newstate->entrance_nodes = &newstate->nodes;
-  for (i = 0 ; i < nodes->nelem ; i++)
-    {
-      re_token_t *node = dfa->nodes + nodes->elems[i];
-      re_token_type_t type = node->type;
-      if (type == CHARACTER && !node->constraint)
-	continue;
-#ifdef RE_ENABLE_I18N
-      newstate->accept_mb |= node->accept_mb;
-#endif /* RE_ENABLE_I18N */
-
-      /* If the state has the halt node, the state is a halt state.  */
-      if (type == END_OF_RE)
-	newstate->halt = 1;
-      else if (type == OP_BACK_REF)
-	newstate->has_backref = 1;
-      else if (type == ANCHOR || node->constraint)
-	newstate->has_constraint = 1;
-    }
-  err = register_state (dfa, newstate, hash);
-  if (BE (err != REG_NOERROR, 0))
-    {
-      free_state (newstate);
-      newstate = NULL;
-    }
-  return newstate;
-}
-
-/* Create the new state which is depend on the context CONTEXT.
-   Return the new state if succeeded, otherwise return NULL.  */
-
-static re_dfastate_t *
-internal_function
-create_cd_newstate (const re_dfa_t *dfa, const re_node_set *nodes,
-		    unsigned int context, unsigned int hash)
-{
-  int i, nctx_nodes = 0;
-  reg_errcode_t err;
-  re_dfastate_t *newstate;
-
-  newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1);
-  if (BE (newstate == NULL, 0))
-    return NULL;
-  err = re_node_set_init_copy (&newstate->nodes, nodes);
-  if (BE (err != REG_NOERROR, 0))
-    {
-      re_free (newstate);
-      return NULL;
-    }
-
-  newstate->context = context;
-  newstate->entrance_nodes = &newstate->nodes;
-
-  for (i = 0 ; i < nodes->nelem ; i++)
-    {
-      re_token_t *node = dfa->nodes + nodes->elems[i];
-      re_token_type_t type = node->type;
-      unsigned int constraint = node->constraint;
-
-      if (type == CHARACTER && !constraint)
-	continue;
-#ifdef RE_ENABLE_I18N
-      newstate->accept_mb |= node->accept_mb;
-#endif /* RE_ENABLE_I18N */
-
-      /* If the state has the halt node, the state is a halt state.  */
-      if (type == END_OF_RE)
-	newstate->halt = 1;
-      else if (type == OP_BACK_REF)
-	newstate->has_backref = 1;
-
-      if (constraint)
-	{
-	  if (newstate->entrance_nodes == &newstate->nodes)
-	    {
-	      newstate->entrance_nodes = re_malloc (re_node_set, 1);
-	      if (BE (newstate->entrance_nodes == NULL, 0))
-		{
-		  free_state (newstate);
-		  return NULL;
-		}
-	      re_node_set_init_copy (newstate->entrance_nodes, nodes);
-	      nctx_nodes = 0;
-	      newstate->has_constraint = 1;
-	    }
-
-	  if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context))
-	    {
-	      re_node_set_remove_at (&newstate->nodes, i - nctx_nodes);
-	      ++nctx_nodes;
-	    }
-	}
-    }
-  err = register_state (dfa, newstate, hash);
-  if (BE (err != REG_NOERROR, 0))
-    {
-      free_state (newstate);
-      newstate = NULL;
-    }
-  return  newstate;
-}

Deleted: trunk/src/utilfuns/regex_internal.h
===================================================================
--- trunk/src/utilfuns/regex_internal.h	2009-12-07 04:02:43 UTC (rev 2486)
+++ trunk/src/utilfuns/regex_internal.h	2009-12-08 07:18:00 UTC (rev 2487)
@@ -1,769 +0,0 @@
-/* Extended regular expression matching and search library.
-   Copyright (C) 2002-2005, 2007, 2008 Free Software Foundation, Inc.
-   This file is part of the GNU C Library.
-   Contributed by Isamu Hasegawa <isamu at yamato.ibm.com>.
-
-   The GNU C Library is free software; you can redistribute it and/or
-   modify it under the terms of the GNU Lesser General Public
-   License as published by the Free Software Foundation; either
-   version 2.1 of the License, or (at your option) any later version.
-
-   The GNU C Library is distributed in the hope that it will be useful,
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-   Lesser General Public License for more details.
-
-   You should have received a copy of the GNU Lesser General Public
-   License along with the GNU C Library; if not, write to the Free
-   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
-   02111-1307 USA.  */
-
-#ifndef _REGEX_INTERNAL_H
-#define _REGEX_INTERNAL_H 1
-
-#include <assert.h>
-#include <ctype.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-
-#if defined HAVE_LANGINFO_H || defined HAVE_LANGINFO_CODESET || defined _LIBC
-# include <langinfo.h>
-#endif
-#if defined HAVE_LOCALE_H || defined _LIBC
-# include <locale.h>
-#endif
-#if defined HAVE_WCHAR_H || defined _LIBC
-# include <wchar.h>
-#endif /* HAVE_WCHAR_H || _LIBC */
-#if defined HAVE_WCTYPE_H || defined _LIBC
-# include <wctype.h>
-#endif /* HAVE_WCTYPE_H || _LIBC */
-#if defined HAVE_STDBOOL_H || defined _LIBC
-# include <stdbool.h>
-#endif /* HAVE_STDBOOL_H || _LIBC */
-#if defined HAVE_STDINT_H || defined _LIBC
-# include <stdint.h>
-#endif /* HAVE_STDINT_H || _LIBC */
-#if defined _LIBC
-# include <bits/libc-lock.h>
-#else
-# define __libc_lock_define(CLASS,NAME)
-# define __libc_lock_init(NAME) do { } while (0)
-# define __libc_lock_lock(NAME) do { } while (0)
-# define __libc_lock_unlock(NAME) do { } while (0)
-#endif
-
-/* In case that the system doesn't have isblank().  */
-#if !defined _LIBC && !defined HAVE_ISBLANK && !defined isblank
-# define isblank(ch) ((ch) == ' ' || (ch) == '\t')
-#endif
-
-#ifdef _LIBC
-# ifndef _RE_DEFINE_LOCALE_FUNCTIONS
-#  define _RE_DEFINE_LOCALE_FUNCTIONS 1
-#   include <locale/localeinfo.h>
-#   include <locale/elem-hash.h>
-#   include <locale/coll-lookup.h>
-# endif
-#endif
-
-/* This is for other GNU distributions with internationalized messages.  */
-#if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
-# include <libintl.h>
-# ifdef _LIBC
-#  undef gettext
-#  define gettext(msgid) \
-  INTUSE(__dcgettext) (_libc_intl_domainname, msgid, LC_MESSAGES)
-# endif
-#else
-# define gettext(msgid) (msgid)
-#endif
-
-#ifndef gettext_noop
-/* This define is so xgettext can find the internationalizable
-   strings.  */
-# define gettext_noop(String) String
-#endif
-
-/* For loser systems without the definition.  */
-#ifndef SIZE_MAX
-# define SIZE_MAX ((size_t) -1)
-#endif
-
-#if (defined MB_CUR_MAX && HAVE_LOCALE_H && HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_WCRTOMB && HAVE_MBRTOWC && HAVE_WCSCOLL) || _LIBC
-# define RE_ENABLE_I18N
-#endif
-
-#if __GNUC__ >= 3
-# define BE(expr, val) __builtin_expect (expr, val)
-#else
-# define BE(expr, val) (expr)
-# define inline
-#endif
-
-/* Number of single byte character.  */
-#define SBC_MAX 256
-
-#define COLL_ELEM_LEN_MAX 8
-
-/* The character which represents newline.  */
-#define NEWLINE_CHAR '\n'
-#define WIDE_NEWLINE_CHAR L'\n'
-
-/* Rename to standard API for using out of glibc.  */
-#ifndef _LIBC
-# define __wctype wctype
-# define __iswctype iswctype
-# define __btowc btowc
-# define __mbrtowc mbrtowc
-# define __mempcpy mempcpy
-# define __wcrtomb wcrtomb
-# define __regfree regfree
-# define attribute_hidden
-#endif /* not _LIBC */
-
-#ifdef __GNUC__
-# define __attribute(arg) __attribute__ (arg)
-#else
-# define __attribute(arg)
-#endif
-
-extern const char __re_error_msgid[] attribute_hidden;
-extern const size_t __re_error_msgid_idx[] attribute_hidden;
-
-/* An integer used to represent a set of bits.  It must be unsigned,
-   and must be at least as wide as unsigned int.  */
-typedef unsigned long int bitset_word_t;
-/* All bits set in a bitset_word_t.  */
-#define BITSET_WORD_MAX ULONG_MAX
-/* Number of bits in a bitset_word_t.  */
-#define BITSET_WORD_BITS (sizeof (bitset_word_t) * CHAR_BIT)
-/* Number of bitset_word_t in a bit_set.  */
-#define BITSET_WORDS (SBC_MAX / BITSET_WORD_BITS)
-typedef bitset_word_t bitset_t[BITSET_WORDS];
-typedef bitset_word_t *re_bitset_ptr_t;
-typedef const bitset_word_t *re_const_bitset_ptr_t;
-
-#define bitset_set(set,i) \
-  (set[i / BITSET_WORD_BITS] |= (bitset_word_t) 1 << i % BITSET_WORD_BITS)
-#define bitset_clear(set,i) \
-  (set[i / BITSET_WORD_BITS] &= ~((bitset_word_t) 1 << i % BITSET_WORD_BITS))
-#define bitset_contain(set,i) \
-  (set[i / BITSET_WORD_BITS] & ((bitset_word_t) 1 << i % BITSET_WORD_BITS))
-#define bitset_empty(set) memset (set, '\0', sizeof (bitset_t))
-#define bitset_set_all(set) memset (set, '\xff', sizeof (bitset_t))
-#define bitset_copy(dest,src) memcpy (dest, src, sizeof (bitset_t))
-
-#define PREV_WORD_CONSTRAINT 0x0001
-#define PREV_NOTWORD_CONSTRAINT 0x0002
-#define NEXT_WORD_CONSTRAINT 0x0004
-#define NEXT_NOTWORD_CONSTRAINT 0x0008
-#define PREV_NEWLINE_CONSTRAINT 0x0010
-#define NEXT_NEWLINE_CONSTRAINT 0x0020
-#define PREV_BEGBUF_CONSTRAINT 0x0040
-#define NEXT_ENDBUF_CONSTRAINT 0x0080
-#define WORD_DELIM_CONSTRAINT 0x0100
-#define NOT_WORD_DELIM_CONSTRAINT 0x0200
-
-typedef enum
-{
-  INSIDE_WORD = PREV_WORD_CONSTRAINT | NEXT_WORD_CONSTRAINT,
-  WORD_FIRST = PREV_NOTWORD_CONSTRAINT | NEXT_WORD_CONSTRAINT,
-  WORD_LAST = PREV_WORD_CONSTRAINT | NEXT_NOTWORD_CONSTRAINT,
-  INSIDE_NOTWORD = PREV_NOTWORD_CONSTRAINT | NEXT_NOTWORD_CONSTRAINT,
-  LINE_FIRST = PREV_NEWLINE_CONSTRAINT,
-  LINE_LAST = NEXT_NEWLINE_CONSTRAINT,
-  BUF_FIRST = PREV_BEGBUF_CONSTRAINT,
-  BUF_LAST = NEXT_ENDBUF_CONSTRAINT,
-  WORD_DELIM = WORD_DELIM_CONSTRAINT,
-  NOT_WORD_DELIM = NOT_WORD_DELIM_CONSTRAINT
-} re_context_type;
-
-typedef struct
-{
-  int alloc;
-  int nelem;
-  int *elems;
-} re_node_set;
-
-typedef enum
-{
-  NON_TYPE = 0,
-
-  /* Node type, These are used by token, node, tree.  */
-  CHARACTER = 1,
-  END_OF_RE = 2,
-  SIMPLE_BRACKET = 3,
-  OP_BACK_REF = 4,
-  OP_PERIOD = 5,
-#ifdef RE_ENABLE_I18N
-  COMPLEX_BRACKET = 6,
-  OP_UTF8_PERIOD = 7,
-#endif /* RE_ENABLE_I18N */
-
-  /* We define EPSILON_BIT as a macro so that OP_OPEN_SUBEXP is used
-     when the debugger shows values of this enum type.  */
-#define EPSILON_BIT 8
-  OP_OPEN_SUBEXP = EPSILON_BIT | 0,
-  OP_CLOSE_SUBEXP = EPSILON_BIT | 1,
-  OP_ALT = EPSILON_BIT | 2,
-  OP_DUP_ASTERISK = EPSILON_BIT | 3,
-  ANCHOR = EPSILON_BIT | 4,
-
-  /* Tree type, these are used only by tree. */
-  CONCAT = 16,
-  SUBEXP = 17,
-
-  /* Token type, these are used only by token.  */
-  OP_DUP_PLUS = 18,
-  OP_DUP_QUESTION,
-  OP_OPEN_BRACKET,
-  OP_CLOSE_BRACKET,
-  OP_CHARSET_RANGE,
-  OP_OPEN_DUP_NUM,
-  OP_CLOSE_DUP_NUM,
-  OP_NON_MATCH_LIST,
-  OP_OPEN_COLL_ELEM,
-  OP_CLOSE_COLL_ELEM,
-  OP_OPEN_EQUIV_CLASS,
-  OP_CLOSE_EQUIV_CLASS,
-  OP_OPEN_CHAR_CLASS,
-  OP_CLOSE_CHAR_CLASS,
-  OP_WORD,
-  OP_NOTWORD,
-  OP_SPACE,
-  OP_NOTSPACE,
-  BACK_SLASH
-
-} re_token_type_t;
-
-#ifdef RE_ENABLE_I18N
-typedef struct
-{
-  /* Multibyte characters.  */
-  wchar_t *mbchars;
-
-  /* Collating symbols.  */
-# ifdef _LIBC
-  int32_t *coll_syms;
-# endif
-
-  /* Equivalence classes. */
-# ifdef _LIBC
-  int32_t *equiv_classes;
-# endif
-
-  /* Range expressions. */
-# ifdef _LIBC
-  uint32_t *range_starts;
-  uint32_t *range_ends;
-# else /* not _LIBC */
-  wchar_t *range_starts;
-  wchar_t *range_ends;
-# endif /* not _LIBC */
-
-  /* Character classes. */
-  wctype_t *char_classes;
-
-  /* If this character set is the non-matching list.  */
-  unsigned int non_match : 1;
-
-  /* # of multibyte characters.  */
-  int nmbchars;
-
-  /* # of collating symbols.  */
-  int ncoll_syms;
-
-  /* # of equivalence classes. */
-  int nequiv_classes;
-
-  /* # of range expressions. */
-  int nranges;
-
-  /* # of character classes. */
-  int nchar_classes;
-} re_charset_t;
-#endif /* RE_ENABLE_I18N */
-
-typedef struct
-{
-  union
-  {
-    unsigned char c;		/* for CHARACTER */
-    re_bitset_ptr_t sbcset;	/* for SIMPLE_BRACKET */
-#ifdef RE_ENABLE_I18N
-    re_charset_t *mbcset;	/* for COMPLEX_BRACKET */
-#endif /* RE_ENABLE_I18N */
-    int idx;			/* for BACK_REF */
-    re_context_type ctx_type;	/* for ANCHOR */
-  } opr;
-#if __GNUC__ >= 2
-  re_token_type_t type : 8;
-#else
-  re_token_type_t type;
-#endif
-  unsigned int constraint : 10;	/* context constraint */
-  unsigned int duplicated : 1;
-  unsigned int opt_subexp : 1;
-#ifdef RE_ENABLE_I18N
-  unsigned int accept_mb : 1;
-  /* These 2 bits can be moved into the union if needed (e.g. if running out
-     of bits; move opr.c to opr.c.c and move the flags to opr.c.flags).  */
-  unsigned int mb_partial : 1;
-#endif
-  unsigned int word_char : 1;
-} re_token_t;
-
-#define IS_EPSILON_NODE(type) ((type) & EPSILON_BIT)
-
-struct re_string_t
-{
-  /* Indicate the raw buffer which is the original string passed as an
-     argument of regexec(), re_search(), etc..  */
-  const unsigned char *raw_mbs;
-  /* Store the multibyte string.  In case of "case insensitive mode" like
-     REG_ICASE, upper cases of the string are stored, otherwise MBS points
-     the same address that RAW_MBS points.  */
-  unsigned char *mbs;
-#ifdef RE_ENABLE_I18N
-  /* Store the wide character string which is corresponding to MBS.  */
-  wint_t *wcs;
-  int *offsets;
-  mbstate_t cur_state;
-#endif
-  /* Index in RAW_MBS.  Each character mbs[i] corresponds to
-     raw_mbs[raw_mbs_idx + i].  */
-  int raw_mbs_idx;
-  /* The length of the valid characters in the buffers.  */
-  int valid_len;
-  /* The corresponding number of bytes in raw_mbs array.  */
-  int valid_raw_len;
-  /* The length of the buffers MBS and WCS.  */
-  int bufs_len;
-  /* The index in MBS, which is updated by re_string_fetch_byte.  */
-  int cur_idx;
-  /* length of RAW_MBS array.  */
-  int raw_len;
-  /* This is RAW_LEN - RAW_MBS_IDX + VALID_LEN - VALID_RAW_LEN.  */
-  int len;
-  /* End of the buffer may be shorter than its length in the cases such
-     as re_match_2, re_search_2.  Then, we use STOP for end of the buffer
-     instead of LEN.  */
-  int raw_stop;
-  /* This is RAW_STOP - RAW_MBS_IDX adjusted through OFFSETS.  */
-  int stop;
-
-  /* The context of mbs[0].  We store the context independently, since
-     the context of mbs[0] may be different from raw_mbs[0], which is
-     the beginning of the input string.  */
-  unsigned int tip_context;
-  /* The translation passed as a part of an argument of re_compile_pattern.  */
-  RE_TRANSLATE_TYPE trans;
-  /* Copy of re_dfa_t's word_char.  */
-  re_const_bitset_ptr_t word_char;
-  /* 1 if REG_ICASE.  */
-  unsigned char icase;
-  unsigned char is_utf8;
-  unsigned char map_notascii;
-  unsigned char mbs_allocated;
-  unsigned char offsets_needed;
-  unsigned char newline_anchor;
-  unsigned char word_ops_used;
-  int mb_cur_max;
-};
-typedef struct re_string_t re_string_t;
-
-
-struct re_dfa_t;
-typedef struct re_dfa_t re_dfa_t;
-
-#ifndef _LIBC
-# ifdef __i386__
-#  define internal_function   __attribute ((regparm (3), stdcall))
-# else
-#  define internal_function
-# endif
-#endif
-
-#ifndef NOT_IN_libc
-static reg_errcode_t re_string_realloc_buffers (re_string_t *pstr,
-						int new_buf_len)
-     internal_function;
-# ifdef RE_ENABLE_I18N
-static void build_wcs_buffer (re_string_t *pstr) internal_function;
-static reg_errcode_t build_wcs_upper_buffer (re_string_t *pstr)
-  internal_function;
-# endif /* RE_ENABLE_I18N */
-static void build_upper_buffer (re_string_t *pstr) internal_function;
-static void re_string_translate_buffer (re_string_t *pstr) internal_function;
-static unsigned int re_string_context_at (const re_string_t *input, int idx,
-					  int eflags)
-     internal_function __attribute ((pure));
-#endif
-#define re_string_peek_byte(pstr, offset) \
-  ((pstr)->mbs[(pstr)->cur_idx + offset])
-#define re_string_fetch_byte(pstr) \
-  ((pstr)->mbs[(pstr)->cur_idx++])
-#define re_string_first_byte(pstr, idx) \
-  ((idx) == (pstr)->valid_len || (pstr)->wcs[idx] != WEOF)
-#define re_string_is_single_byte_char(pstr, idx) \
-  ((pstr)->wcs[idx] != WEOF && ((pstr)->valid_len == (idx) + 1 \
-				|| (pstr)->wcs[(idx) + 1] != WEOF))
-#define re_string_eoi(pstr) ((pstr)->stop <= (pstr)->cur_idx)
-#define re_string_cur_idx(pstr) ((pstr)->cur_idx)
-#define re_string_get_buffer(pstr) ((pstr)->mbs)
-#define re_string_length(pstr) ((pstr)->len)
-#define re_string_byte_at(pstr,idx) ((pstr)->mbs[idx])
-#define re_string_skip_bytes(pstr,idx) ((pstr)->cur_idx += (idx))
-#define re_string_set_index(pstr,idx) ((pstr)->cur_idx = (idx))
-
-#include <alloca.h>
-
-#ifndef _LIBC
-# if HAVE_ALLOCA
-/* The OS usually guarantees only one guard page at the bottom of the stack,
-   and a page size can be as small as 4096 bytes.  So we cannot safely
-   allocate anything larger than 4096 bytes.  Also care for the possibility
-   of a few compiler-allocated temporary stack slots.  */
-#  define __libc_use_alloca(n) ((n) < 4032)
-# else
-/* alloca is implemented with malloc, so just use malloc.  */
-#  define __libc_use_alloca(n) 0
-# endif
-#endif
-
-#define re_malloc(t,n) ((t *) malloc ((n) * sizeof (t)))
-#define re_realloc(p,t,n) ((t *) realloc (p, (n) * sizeof (t)))
-#define re_free(p) free (p)
-
-struct bin_tree_t
-{
-  struct bin_tree_t *parent;
-  struct bin_tree_t *left;
-  struct bin_tree_t *right;
-  struct bin_tree_t *first;
-  struct bin_tree_t *next;
-
-  re_token_t token;
-
-  /* `node_idx' is the index in dfa->nodes, if `type' == 0.
-     Otherwise `type' indicate the type of this node.  */
-  int node_idx;
-};
-typedef struct bin_tree_t bin_tree_t;
-
-#define BIN_TREE_STORAGE_SIZE \
-  ((1024 - sizeof (void *)) / sizeof (bin_tree_t))
-
-struct bin_tree_storage_t
-{
-  struct bin_tree_storage_t *next;
-  bin_tree_t data[BIN_TREE_STORAGE_SIZE];
-};
-typedef struct bin_tree_storage_t bin_tree_storage_t;
-
-#define CONTEXT_WORD 1
-#define CONTEXT_NEWLINE (CONTEXT_WORD << 1)
-#define CONTEXT_BEGBUF (CONTEXT_NEWLINE << 1)
-#define CONTEXT_ENDBUF (CONTEXT_BEGBUF << 1)
-
-#define IS_WORD_CONTEXT(c) ((c) & CONTEXT_WORD)
-#define IS_NEWLINE_CONTEXT(c) ((c) & CONTEXT_NEWLINE)
-#define IS_BEGBUF_CONTEXT(c) ((c) & CONTEXT_BEGBUF)
-#define IS_ENDBUF_CONTEXT(c) ((c) & CONTEXT_ENDBUF)
-#define IS_ORDINARY_CONTEXT(c) ((c) == 0)
-
-#define IS_WORD_CHAR(ch) (isalnum (ch) || (ch) == '_')
-#define IS_NEWLINE(ch) ((ch) == NEWLINE_CHAR)
-#define IS_WIDE_WORD_CHAR(ch) (iswalnum (ch) || (ch) == L'_')
-#define IS_WIDE_NEWLINE(ch) ((ch) == WIDE_NEWLINE_CHAR)
-
-#define NOT_SATISFY_PREV_CONSTRAINT(constraint,context) \
- ((((constraint) & PREV_WORD_CONSTRAINT) && !IS_WORD_CONTEXT (context)) \
-  || ((constraint & PREV_NOTWORD_CONSTRAINT) && IS_WORD_CONTEXT (context)) \
-  || ((constraint & PREV_NEWLINE_CONSTRAINT) && !IS_NEWLINE_CONTEXT (context))\
-  || ((constraint & PREV_BEGBUF_CONSTRAINT) && !IS_BEGBUF_CONTEXT (context)))
-
-#define NOT_SATISFY_NEXT_CONSTRAINT(constraint,context) \
- ((((constraint) & NEXT_WORD_CONSTRAINT) && !IS_WORD_CONTEXT (context)) \
-  || (((constraint) & NEXT_NOTWORD_CONSTRAINT) && IS_WORD_CONTEXT (context)) \
-  || (((constraint) & NEXT_NEWLINE_CONSTRAINT) && !IS_NEWLINE_CONTEXT (context)) \
-  || (((constraint) & NEXT_ENDBUF_CONSTRAINT) && !IS_ENDBUF_CONTEXT (context)))
-
-struct re_dfastate_t
-{
-  unsigned int hash;
-  re_node_set nodes;
-  re_node_set non_eps_nodes;
-  re_node_set inveclosure;
-  re_node_set *entrance_nodes;
-  struct re_dfastate_t **trtable, **word_trtable;
-  unsigned int context : 4;
-  unsigned int halt : 1;
-  /* If this state can accept `multi byte'.
-     Note that we refer to multibyte characters, and multi character
-     collating elements as `multi byte'.  */
-  unsigned int accept_mb : 1;
-  /* If this state has backreference node(s).  */
-  unsigned int has_backref : 1;
-  unsigned int has_constraint : 1;
-};
-typedef struct re_dfastate_t re_dfastate_t;
-
-struct re_state_table_entry
-{
-  int num;
-  int alloc;
-  re_dfastate_t **array;
-};
-
-/* Array type used in re_sub_match_last_t and re_sub_match_top_t.  */
-
-typedef struct
-{
-  int next_idx;
-  int alloc;
-  re_dfastate_t **array;
-} state_array_t;
-
-/* Store information about the node NODE whose type is OP_CLOSE_SUBEXP.  */
-
-typedef struct
-{
-  int node;
-  int str_idx; /* The position NODE match at.  */
-  state_array_t path;
-} re_sub_match_last_t;
-
-/* Store information about the node NODE whose type is OP_OPEN_SUBEXP.
-   And information about the node, whose type is OP_CLOSE_SUBEXP,
-   corresponding to NODE is stored in LASTS.  */
-
-typedef struct
-{
-  int str_idx;
-  int node;
-  state_array_t *path;
-  int alasts; /* Allocation size of LASTS.  */
-  int nlasts; /* The number of LASTS.  */
-  re_sub_match_last_t **lasts;
-} re_sub_match_top_t;
-
-struct re_backref_cache_entry
-{
-  int node;
-  int str_idx;
-  int subexp_from;
-  int subexp_to;
-  char more;
-  char unused;
-  unsigned short int eps_reachable_subexps_map;
-};
-
-typedef struct
-{
-  /* The string object corresponding to the input string.  */
-  re_string_t input;
-#if defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L)
-  const re_dfa_t *const dfa;
-#else
-  const re_dfa_t *dfa;
-#endif
-  /* EFLAGS of the argument of regexec.  */
-  int eflags;
-  /* Where the matching ends.  */
-  int match_last;
-  int last_node;
-  /* The state log used by the matcher.  */
-  re_dfastate_t **state_log;
-  int state_log_top;
-  /* Back reference cache.  */
-  int nbkref_ents;
-  int abkref_ents;
-  struct re_backref_cache_entry *bkref_ents;
-  int max_mb_elem_len;
-  int nsub_tops;
-  int asub_tops;
-  re_sub_match_top_t **sub_tops;
-} re_match_context_t;
-
-typedef struct
-{
-  re_dfastate_t **sifted_states;
-  re_dfastate_t **limited_states;
-  int last_node;
-  int last_str_idx;
-  re_node_set limits;
-} re_sift_context_t;
-
-struct re_fail_stack_ent_t
-{
-  int idx;
-  int node;
-  regmatch_t *regs;
-  re_node_set eps_via_nodes;
-};
-
-struct re_fail_stack_t
-{
-  int num;
-  int alloc;
-  struct re_fail_stack_ent_t *stack;
-};
-
-struct re_dfa_t
-{
-  re_token_t *nodes;
-  size_t nodes_alloc;
-  size_t nodes_len;
-  int *nexts;
-  int *org_indices;
-  re_node_set *edests;
-  re_node_set *eclosures;
-  re_node_set *inveclosures;
-  struct re_state_table_entry *state_table;
-  re_dfastate_t *init_state;
-  re_dfastate_t *init_state_word;
-  re_dfastate_t *init_state_nl;
-  re_dfastate_t *init_state_begbuf;
-  bin_tree_t *str_tree;
-  bin_tree_storage_t *str_tree_storage;
-  re_bitset_ptr_t sb_char;
-  int str_tree_storage_idx;
-
-  /* number of subexpressions `re_nsub' is in regex_t.  */
-  unsigned int state_hash_mask;
-  int init_node;
-  int nbackref; /* The number of backreference in this dfa.  */
-
-  /* Bitmap expressing which backreference is used.  */
-  bitset_word_t used_bkref_map;
-  bitset_word_t completed_bkref_map;
-
-  unsigned int has_plural_match : 1;
-  /* If this dfa has "multibyte node", which is a backreference or
-     a node which can accept multibyte character or multi character
-     collating element.  */
-  unsigned int has_mb_node : 1;
-  unsigned int is_utf8 : 1;
-  unsigned int map_notascii : 1;
-  unsigned int word_ops_used : 1;
-  int mb_cur_max;
-  bitset_t word_char;
-  reg_syntax_t syntax;
-  int *subexp_map;
-#ifdef DEBUG
-  char* re_str;
-#endif
-  __libc_lock_define (, lock)
-};
-
-#define re_node_set_init_empty(set) memset (set, '\0', sizeof (re_node_set))
-#define re_node_set_remove(set,id) \
-  (re_node_set_remove_at (set, re_node_set_contains (set, id) - 1))
-#define re_node_set_empty(p) ((p)->nelem = 0)
-#define re_node_set_free(set) re_free ((set)->elems)
-
-
-typedef enum
-{
-  SB_CHAR,
-  MB_CHAR,
-  EQUIV_CLASS,
-  COLL_SYM,
-  CHAR_CLASS
-} bracket_elem_type;
-
-typedef struct
-{
-  bracket_elem_type type;
-  union
-  {
-    unsigned char ch;
-    unsigned char *name;
-    wchar_t wch;
-  } opr;
-} bracket_elem_t;
-
-
-/* Inline functions for bitset operation.  */
-static inline void
-bitset_not (bitset_t set)
-{
-  int bitset_i;
-  for (bitset_i = 0; bitset_i < BITSET_WORDS; ++bitset_i)
-    set[bitset_i] = ~set[bitset_i];
-}
-
-static inline void
-bitset_merge (bitset_t dest, const bitset_t src)
-{
-  int bitset_i;
-  for (bitset_i = 0; bitset_i < BITSET_WORDS; ++bitset_i)
-    dest[bitset_i] |= src[bitset_i];
-}
-
-static inline void
-bitset_mask (bitset_t dest, const bitset_t src)
-{
-  int bitset_i;
-  for (bitset_i = 0; bitset_i < BITSET_WORDS; ++bitset_i)
-    dest[bitset_i] &= src[bitset_i];
-}
-
-#ifdef RE_ENABLE_I18N
-/* Inline functions for re_string.  */
-static inline int
-internal_function __attribute ((pure))
-re_string_char_size_at (const re_string_t *pstr, int idx)
-{
-  int byte_idx;
-  if (pstr->mb_cur_max == 1)
-    return 1;
-  for (byte_idx = 1; idx + byte_idx < pstr->valid_len; ++byte_idx)
-    if (pstr->wcs[idx + byte_idx] != WEOF)
-      break;
-  return byte_idx;
-}
-
-static inline wint_t
-internal_function __attribute ((pure))
-re_string_wchar_at (const re_string_t *pstr, int idx)
-{
-  if (pstr->mb_cur_max == 1)
-    return (wint_t) pstr->mbs[idx];
-  return (wint_t) pstr->wcs[idx];
-}
-
-# ifndef NOT_IN_libc
-static int
-internal_function __attribute ((pure))
-re_string_elem_size_at (const re_string_t *pstr, int idx)
-{
-#  ifdef _LIBC
-  const unsigned char *p, *extra;
-  const int32_t *table, *indirect;
-  int32_t tmp;
-#   include <locale/weight.h>
-  uint_fast32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
-
-  if (nrules != 0)
-    {
-      table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
-      extra = (const unsigned char *)
-	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
-      indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE,
-						_NL_COLLATE_INDIRECTMB);
-      p = pstr->mbs + idx;
-      tmp = findidx (&p);
-      return p - pstr->mbs - idx;
-    }
-  else
-#  endif /* _LIBC */
-    return 1;
-}
-# endif
-#endif /* RE_ENABLE_I18N */
-
-#endif /*  _REGEX_INTERNAL_H */

Deleted: trunk/src/utilfuns/regexec.c
===================================================================
--- trunk/src/utilfuns/regexec.c	2009-12-07 04:02:43 UTC (rev 2486)
+++ trunk/src/utilfuns/regexec.c	2009-12-08 07:18:00 UTC (rev 2487)
@@ -1,4338 +0,0 @@
-/* Extended regular expression matching and search library.
-   Copyright (C) 2002, 2003, 2004, 2005, 2007, 2009 Free Software Foundation, Inc.
-   This file is part of the GNU C Library.
-   Contributed by Isamu Hasegawa <isamu at yamato.ibm.com>.
-
-   The GNU C Library is free software; you can redistribute it and/or
-   modify it under the terms of the GNU Lesser General Public
-   License as published by the Free Software Foundation; either
-   version 2.1 of the License, or (at your option) any later version.
-
-   The GNU C Library is distributed in the hope that it will be useful,
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-   Lesser General Public License for more details.
-
-   You should have received a copy of the GNU Lesser General Public
-   License along with the GNU C Library; if not, write to the Free
-   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
-   02111-1307 USA.  */
-
-static reg_errcode_t match_ctx_init (re_match_context_t *cache, int eflags,
-				     int n) internal_function;
-static void match_ctx_clean (re_match_context_t *mctx) internal_function;
-static void match_ctx_free (re_match_context_t *cache) internal_function;
-static reg_errcode_t match_ctx_add_entry (re_match_context_t *cache, int node,
-					  int str_idx, int from, int to)
-     internal_function;
-static int search_cur_bkref_entry (const re_match_context_t *mctx, int str_idx)
-     internal_function;
-static reg_errcode_t match_ctx_add_subtop (re_match_context_t *mctx, int node,
-					   int str_idx) internal_function;
-static re_sub_match_last_t * match_ctx_add_sublast (re_sub_match_top_t *subtop,
-						   int node, int str_idx)
-     internal_function;
-static void sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts,
-			   re_dfastate_t **limited_sts, int last_node,
-			   int last_str_idx)
-     internal_function;
-static reg_errcode_t re_search_internal (const regex_t *preg,
-					 const char *string, int length,
-					 int start, int range, int stop,
-					 size_t nmatch, regmatch_t pmatch[],
-					 int eflags) internal_function;
-static int re_search_2_stub (struct re_pattern_buffer *bufp,
-			     const char *string1, int length1,
-			     const char *string2, int length2,
-			     int start, int range, struct re_registers *regs,
-			     int stop, int ret_len) internal_function;
-static int re_search_stub (struct re_pattern_buffer *bufp,
-			   const char *string, int length, int start,
-			   int range, int stop, struct re_registers *regs,
-			   int ret_len) internal_function;
-static unsigned re_copy_regs (struct re_registers *regs, regmatch_t *pmatch,
-			      int nregs, int regs_allocated) internal_function;
-static reg_errcode_t prune_impossible_nodes (re_match_context_t *mctx)
-     internal_function;
-static int check_matching (re_match_context_t *mctx, int fl_longest_match,
-			   int *p_match_first) internal_function;
-static int check_halt_state_context (const re_match_context_t *mctx,
-				     const re_dfastate_t *state, int idx)
-     internal_function;
-static void update_regs (const re_dfa_t *dfa, regmatch_t *pmatch,
-			 regmatch_t *prev_idx_match, int cur_node,
-			 int cur_idx, int nmatch) internal_function;
-static reg_errcode_t push_fail_stack (struct re_fail_stack_t *fs,
-				      int str_idx, int dest_node, int nregs,
-				      regmatch_t *regs,
-				      re_node_set *eps_via_nodes)
-     internal_function;
-static reg_errcode_t set_regs (const regex_t *preg,
-			       const re_match_context_t *mctx,
-			       size_t nmatch, regmatch_t *pmatch,
-			       int fl_backtrack) internal_function;
-static reg_errcode_t free_fail_stack_return (struct re_fail_stack_t *fs)
-     internal_function;
-
-#ifdef RE_ENABLE_I18N
-static int sift_states_iter_mb (const re_match_context_t *mctx,
-				re_sift_context_t *sctx,
-				int node_idx, int str_idx, int max_str_idx)
-     internal_function;
-#endif /* RE_ENABLE_I18N */
-static reg_errcode_t sift_states_backward (const re_match_context_t *mctx,
-					   re_sift_context_t *sctx)
-     internal_function;
-static reg_errcode_t build_sifted_states (const re_match_context_t *mctx,
-					  re_sift_context_t *sctx, int str_idx,
-					  re_node_set *cur_dest)
-     internal_function;
-static reg_errcode_t update_cur_sifted_state (const re_match_context_t *mctx,
-					      re_sift_context_t *sctx,
-					      int str_idx,
-					      re_node_set *dest_nodes)
-     internal_function;
-static reg_errcode_t add_epsilon_src_nodes (const re_dfa_t *dfa,
-					    re_node_set *dest_nodes,
-					    const re_node_set *candidates)
-     internal_function;
-static int check_dst_limits (const re_match_context_t *mctx,
-			     re_node_set *limits,
-			     int dst_node, int dst_idx, int src_node,
-			     int src_idx) internal_function;
-static int check_dst_limits_calc_pos_1 (const re_match_context_t *mctx,
-					int boundaries, int subexp_idx,
-					int from_node, int bkref_idx)
-     internal_function;
-static int check_dst_limits_calc_pos (const re_match_context_t *mctx,
-				      int limit, int subexp_idx,
-				      int node, int str_idx,
-				      int bkref_idx) internal_function;
-static reg_errcode_t check_subexp_limits (const re_dfa_t *dfa,
-					  re_node_set *dest_nodes,
-					  const re_node_set *candidates,
-					  re_node_set *limits,
-					  struct re_backref_cache_entry *bkref_ents,
-					  int str_idx) internal_function;
-static reg_errcode_t sift_states_bkref (const re_match_context_t *mctx,
-					re_sift_context_t *sctx,
-					int str_idx, const re_node_set *candidates)
-     internal_function;
-static reg_errcode_t merge_state_array (const re_dfa_t *dfa,
-					re_dfastate_t **dst,
-					re_dfastate_t **src, int num)
-     internal_function;
-static re_dfastate_t *find_recover_state (reg_errcode_t *err,
-					 re_match_context_t *mctx) internal_function;
-static re_dfastate_t *transit_state (reg_errcode_t *err,
-				     re_match_context_t *mctx,
-				     re_dfastate_t *state) internal_function;
-static re_dfastate_t *merge_state_with_log (reg_errcode_t *err,
-					    re_match_context_t *mctx,
-					    re_dfastate_t *next_state)
-     internal_function;
-static reg_errcode_t check_subexp_matching_top (re_match_context_t *mctx,
-						re_node_set *cur_nodes,
-						int str_idx) internal_function;
-#if 0
-static re_dfastate_t *transit_state_sb (reg_errcode_t *err,
-					re_match_context_t *mctx,
-					re_dfastate_t *pstate)
-     internal_function;
-#endif
-#ifdef RE_ENABLE_I18N
-static reg_errcode_t transit_state_mb (re_match_context_t *mctx,
-				       re_dfastate_t *pstate)
-     internal_function;
-#endif /* RE_ENABLE_I18N */
-static reg_errcode_t transit_state_bkref (re_match_context_t *mctx,
-					  const re_node_set *nodes)
-     internal_function;
-static reg_errcode_t get_subexp (re_match_context_t *mctx,
-				 int bkref_node, int bkref_str_idx)
-     internal_function;
-static reg_errcode_t get_subexp_sub (re_match_context_t *mctx,
-				     const re_sub_match_top_t *sub_top,
-				     re_sub_match_last_t *sub_last,
-				     int bkref_node, int bkref_str)
-     internal_function;
-static int find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes,
-			     int subexp_idx, int type) internal_function;
-static reg_errcode_t check_arrival (re_match_context_t *mctx,
-				    state_array_t *path, int top_node,
-				    int top_str, int last_node, int last_str,
-				    int type) internal_function;
-static reg_errcode_t check_arrival_add_next_nodes (re_match_context_t *mctx,
-						   int str_idx,
-						   re_node_set *cur_nodes,
-						   re_node_set *next_nodes)
-     internal_function;
-static reg_errcode_t check_arrival_expand_ecl (const re_dfa_t *dfa,
-					       re_node_set *cur_nodes,
-					       int ex_subexp, int type)
-     internal_function;
-static reg_errcode_t check_arrival_expand_ecl_sub (const re_dfa_t *dfa,
-						   re_node_set *dst_nodes,
-						   int target, int ex_subexp,
-						   int type) internal_function;
-static reg_errcode_t expand_bkref_cache (re_match_context_t *mctx,
-					 re_node_set *cur_nodes, int cur_str,
-					 int subexp_num, int type)
-     internal_function;
-static int build_trtable (const re_dfa_t *dfa,
-			  re_dfastate_t *state) internal_function;
-#ifdef RE_ENABLE_I18N
-static int check_node_accept_bytes (const re_dfa_t *dfa, int node_idx,
-				    const re_string_t *input, int idx)
-     internal_function;
-# ifdef _LIBC
-static unsigned int find_collation_sequence_value (const unsigned char *mbs,
-						   size_t name_len)
-     internal_function;
-# endif /* _LIBC */
-#endif /* RE_ENABLE_I18N */
-static int group_nodes_into_DFAstates (const re_dfa_t *dfa,
-				       const re_dfastate_t *state,
-				       re_node_set *states_node,
-				       bitset_t *states_ch) internal_function;
-static int check_node_accept (const re_match_context_t *mctx,
-			      const re_token_t *node, int idx)
-     internal_function;
-static reg_errcode_t extend_buffers (re_match_context_t *mctx)
-     internal_function;
-
-/* Entry point for POSIX code.  */
-
-/* regexec searches for a given pattern, specified by PREG, in the
-   string STRING.
-
-   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
-   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
-   least NMATCH elements, and we set them to the offsets of the
-   corresponding matched substrings.
-
-   EFLAGS specifies `execution flags' which affect matching: if
-   REG_NOTBOL is set, then ^ does not match at the beginning of the
-   string; if REG_NOTEOL is set, then $ does not match at the end.
-
-   We return 0 if we find a match and REG_NOMATCH if not.  */
-
-int
-regexec (preg, string, nmatch, pmatch, eflags)
-    const regex_t *__restrict preg;
-    const char *__restrict string;
-    size_t nmatch;
-    regmatch_t pmatch[];
-    int eflags;
-{
-  reg_errcode_t err;
-  int start, length;
-  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
-
-  if (eflags & ~(REG_NOTBOL | REG_NOTEOL | REG_STARTEND))
-    return REG_BADPAT;
-
-  if (eflags & REG_STARTEND)
-    {
-      start = pmatch[0].rm_so;
-      length = pmatch[0].rm_eo;
-    }
-  else
-    {
-      start = 0;
-      length = strlen (string);
-    }
-
-  __libc_lock_lock (dfa->lock);
-  if (preg->no_sub)
-    err = re_search_internal (preg, string, length, start, length - start,
-			      length, 0, NULL, eflags);
-  else
-    err = re_search_internal (preg, string, length, start, length - start,
-			      length, nmatch, pmatch, eflags);
-  __libc_lock_unlock (dfa->lock);
-  return err != REG_NOERROR;
-}
-
-#ifdef _LIBC
-# include <shlib-compat.h>
-versioned_symbol (libc, __regexec, regexec, GLIBC_2_3_4);
-
-# if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3_4)
-__typeof__ (__regexec) __compat_regexec;
-
-int
-attribute_compat_text_section
-__compat_regexec (const regex_t *__restrict preg,
-		  const char *__restrict string, size_t nmatch,
-		  regmatch_t pmatch[], int eflags)
-{
-  return regexec (preg, string, nmatch, pmatch,
-		  eflags & (REG_NOTBOL | REG_NOTEOL));
-}
-compat_symbol (libc, __compat_regexec, regexec, GLIBC_2_0);
-# endif
-#endif
-
-/* Entry points for GNU code.  */
-
-/* re_match, re_search, re_match_2, re_search_2
-
-   The former two functions operate on STRING with length LENGTH,
-   while the later two operate on concatenation of STRING1 and STRING2
-   with lengths LENGTH1 and LENGTH2, respectively.
-
-   re_match() matches the compiled pattern in BUFP against the string,
-   starting at index START.
-
-   re_search() first tries matching at index START, then it tries to match
-   starting from index START + 1, and so on.  The last start position tried
-   is START + RANGE.  (Thus RANGE = 0 forces re_search to operate the same
-   way as re_match().)
-
-   The parameter STOP of re_{match,search}_2 specifies that no match exceeding
-   the first STOP characters of the concatenation of the strings should be
-   concerned.
-
-   If REGS is not NULL, and BUFP->no_sub is not set, the offsets of the match
-   and all groups is stroed in REGS.  (For the "_2" variants, the offsets are
-   computed relative to the concatenation, not relative to the individual
-   strings.)
-
-   On success, re_match* functions return the length of the match, re_search*
-   return the position of the start of the match.  Return value -1 means no
-   match was found and -2 indicates an internal error.  */
-
-int
-re_match (bufp, string, length, start, regs)
-    struct re_pattern_buffer *bufp;
-    const char *string;
-    int length, start;
-    struct re_registers *regs;
-{
-  return re_search_stub (bufp, string, length, start, 0, length, regs, 1);
-}
-#ifdef _LIBC
-weak_alias (__re_match, re_match)
-#endif
-
-int
-re_search (bufp, string, length, start, range, regs)
-    struct re_pattern_buffer *bufp;
-    const char *string;
-    int length, start, range;
-    struct re_registers *regs;
-{
-  return re_search_stub (bufp, string, length, start, range, length, regs, 0);
-}
-#ifdef _LIBC
-weak_alias (__re_search, re_search)
-#endif
-
-int
-re_match_2 (bufp, string1, length1, string2, length2, start, regs, stop)
-    struct re_pattern_buffer *bufp;
-    const char *string1, *string2;
-    int length1, length2, start, stop;
-    struct re_registers *regs;
-{
-  return re_search_2_stub (bufp, string1, length1, string2, length2,
-			   start, 0, regs, stop, 1);
-}
-#ifdef _LIBC
-weak_alias (__re_match_2, re_match_2)
-#endif
-
-int
-re_search_2 (bufp, string1, length1, string2, length2, start, range, regs, stop)
-    struct re_pattern_buffer *bufp;
-    const char *string1, *string2;
-    int length1, length2, start, range, stop;
-    struct re_registers *regs;
-{
-  return re_search_2_stub (bufp, string1, length1, string2, length2,
-			   start, range, regs, stop, 0);
-}
-#ifdef _LIBC
-weak_alias (__re_search_2, re_search_2)
-#endif
-
-static int
-re_search_2_stub (bufp, string1, length1, string2, length2, start, range, regs,
-		  stop, ret_len)
-    struct re_pattern_buffer *bufp;
-    const char *string1, *string2;
-    int length1, length2, start, range, stop, ret_len;
-    struct re_registers *regs;
-{
-  const char *str;
-  int rval;
-  int len = length1 + length2;
-  int free_str = 0;
-
-  if (BE (length1 < 0 || length2 < 0 || stop < 0, 0))
-    return -2;
-
-  /* Concatenate the strings.  */
-  if (length2 > 0)
-    if (length1 > 0)
-      {
-	char *s = re_malloc (char, len);
-
-	if (BE (s == NULL, 0))
-	  return -2;
-#ifdef _LIBC
-	memcpy (__mempcpy (s, string1, length1), string2, length2);
-#else
-	memcpy (s, string1, length1);
-	memcpy (s + length1, string2, length2);
-#endif
-	str = s;
-	free_str = 1;
-      }
-    else
-      str = string2;
-  else
-    str = string1;
-
-  rval = re_search_stub (bufp, str, len, start, range, stop, regs,
-			 ret_len);
-  if (free_str)
-    re_free ((char *) str);
-  return rval;
-}
-
-/* The parameters have the same meaning as those of re_search.
-   Additional parameters:
-   If RET_LEN is nonzero the length of the match is returned (re_match style);
-   otherwise the position of the match is returned.  */
-
-static int
-re_search_stub (bufp, string, length, start, range, stop, regs, ret_len)
-    struct re_pattern_buffer *bufp;
-    const char *string;
-    int length, start, range, stop, ret_len;
-    struct re_registers *regs;
-{
-  reg_errcode_t result;
-  regmatch_t *pmatch;
-  int nregs, rval;
-  int eflags = 0;
-  re_dfa_t *dfa = (re_dfa_t *) bufp->buffer;
-
-  /* Check for out-of-range.  */
-  if (BE (start < 0 || start > length, 0))
-    return -1;
-  if (BE (start + range > length, 0))
-    range = length - start;
-  else if (BE (start + range < 0, 0))
-    range = -start;
-
-  __libc_lock_lock (dfa->lock);
-
-  eflags |= (bufp->not_bol) ? REG_NOTBOL : 0;
-  eflags |= (bufp->not_eol) ? REG_NOTEOL : 0;
-
-  /* Compile fastmap if we haven't yet.  */
-  if (range > 0 && bufp->fastmap != NULL && !bufp->fastmap_accurate)
-    re_compile_fastmap (bufp);
-
-  if (BE (bufp->no_sub, 0))
-    regs = NULL;
-
-  /* We need at least 1 register.  */
-  if (regs == NULL)
-    nregs = 1;
-  else if (BE (bufp->regs_allocated == REGS_FIXED &&
-	       regs->num_regs < bufp->re_nsub + 1, 0))
-    {
-      nregs = regs->num_regs;
-      if (BE (nregs < 1, 0))
-	{
-	  /* Nothing can be copied to regs.  */
-	  regs = NULL;
-	  nregs = 1;
-	}
-    }
-  else
-    nregs = bufp->re_nsub + 1;
-  pmatch = re_malloc (regmatch_t, nregs);
-  if (BE (pmatch == NULL, 0))
-    {
-      rval = -2;
-      goto out;
-    }
-
-  result = re_search_internal (bufp, string, length, start, range, stop,
-			       nregs, pmatch, eflags);
-
-  rval = 0;
-
-  /* I hope we needn't fill ther regs with -1's when no match was found.  */
-  if (result != REG_NOERROR)
-    rval = -1;
-  else if (regs != NULL)
-    {
-      /* If caller wants register contents data back, copy them.  */
-      bufp->regs_allocated = re_copy_regs (regs, pmatch, nregs,
-					   bufp->regs_allocated);
-      if (BE (bufp->regs_allocated == REGS_UNALLOCATED, 0))
-	rval = -2;
-    }
-
-  if (BE (rval == 0, 1))
-    {
-      if (ret_len)
-	{
-	  assert (pmatch[0].rm_so == start);
-	  rval = pmatch[0].rm_eo - start;
-	}
-      else
-	rval = pmatch[0].rm_so;
-    }
-  re_free (pmatch);
- out:
-  __libc_lock_unlock (dfa->lock);
-  return rval;
-}
-
-static unsigned
-re_copy_regs (regs, pmatch, nregs, regs_allocated)
-    struct re_registers *regs;
-    regmatch_t *pmatch;
-    int nregs, regs_allocated;
-{
-  int rval = REGS_REALLOCATE;
-  int i;
-  int need_regs = nregs + 1;
-  /* We need one extra element beyond `num_regs' for the `-1' marker GNU code
-     uses.  */
-
-  /* Have the register data arrays been allocated?  */
-  if (regs_allocated == REGS_UNALLOCATED)
-    { /* No.  So allocate them with malloc.  */
-      regs->start = re_malloc (regoff_t, need_regs);
-      regs->end = re_malloc (regoff_t, need_regs);
-      if (BE (regs->start == NULL, 0) || BE (regs->end == NULL, 0))
-	return REGS_UNALLOCATED;
-      regs->num_regs = need_regs;
-    }
-  else if (regs_allocated == REGS_REALLOCATE)
-    { /* Yes.  If we need more elements than were already
-	 allocated, reallocate them.  If we need fewer, just
-	 leave it alone.  */
-      if (BE (need_regs > regs->num_regs, 0))
-	{
-	  regoff_t *new_start = re_realloc (regs->start, regoff_t, need_regs);
-	  regoff_t *new_end = re_realloc (regs->end, regoff_t, need_regs);
-	  if (BE (new_start == NULL, 0) || BE (new_end == NULL, 0))
-	    return REGS_UNALLOCATED;
-	  regs->start = new_start;
-	  regs->end = new_end;
-	  regs->num_regs = need_regs;
-	}
-    }
-  else
-    {
-      assert (regs_allocated == REGS_FIXED);
-      /* This function may not be called with REGS_FIXED and nregs too big.  */
-      assert (regs->num_regs >= nregs);
-      rval = REGS_FIXED;
-    }
-
-  /* Copy the regs.  */
-  for (i = 0; i < nregs; ++i)
-    {
-      regs->start[i] = pmatch[i].rm_so;
-      regs->end[i] = pmatch[i].rm_eo;
-    }
-  for ( ; i < regs->num_regs; ++i)
-    regs->start[i] = regs->end[i] = -1;
-
-  return rval;
-}
-
-/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
-   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
-   this memory for recording register information.  STARTS and ENDS
-   must be allocated using the malloc library routine, and must each
-   be at least NUM_REGS * sizeof (regoff_t) bytes long.
-
-   If NUM_REGS == 0, then subsequent matches should allocate their own
-   register data.
-
-   Unless this function is called, the first search or match using
-   PATTERN_BUFFER will allocate its own register data, without
-   freeing the old data.  */
-
-void
-re_set_registers (bufp, regs, num_regs, starts, ends)
-    struct re_pattern_buffer *bufp;
-    struct re_registers *regs;
-    unsigned num_regs;
-    regoff_t *starts, *ends;
-{
-  if (num_regs)
-    {
-      bufp->regs_allocated = REGS_REALLOCATE;
-      regs->num_regs = num_regs;
-      regs->start = starts;
-      regs->end = ends;
-    }
-  else
-    {
-      bufp->regs_allocated = REGS_UNALLOCATED;
-      regs->num_regs = 0;
-      regs->start = regs->end = (regoff_t *) 0;
-    }
-}
-#ifdef _LIBC
-weak_alias (__re_set_registers, re_set_registers)
-#endif
-
-/* Entry points compatible with 4.2 BSD regex library.  We don't define
-   them unless specifically requested.  */
-
-#if defined _REGEX_RE_COMP || defined _LIBC
-int
-# ifdef _LIBC
-weak_function
-# endif
-re_exec (s)
-     const char *s;
-{
-  return 0 == regexec (&re_comp_buf, s, 0, NULL, 0);
-}
-#endif /* _REGEX_RE_COMP */
-
-/* Internal entry point.  */
-
-/* Searches for a compiled pattern PREG in the string STRING, whose
-   length is LENGTH.  NMATCH, PMATCH, and EFLAGS have the same
-   mingings with regexec.  START, and RANGE have the same meanings
-   with re_search.
-   Return REG_NOERROR if we find a match, and REG_NOMATCH if not,
-   otherwise return the error code.
-   Note: We assume front end functions already check ranges.
-   (START + RANGE >= 0 && START + RANGE <= LENGTH)  */
-
-static reg_errcode_t
-re_search_internal (preg, string, length, start, range, stop, nmatch, pmatch,
-		    eflags)
-    const regex_t *preg;
-    const char *string;
-    int length, start, range, stop, eflags;
-    size_t nmatch;
-    regmatch_t pmatch[];
-{
-  reg_errcode_t err;
-  const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer;
-  int left_lim, right_lim, incr;
-  int fl_longest_match, match_first, match_kind, match_last = -1;
-  int extra_nmatch;
-  int sb, ch;
-#if defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L)
-  re_match_context_t mctx = { .dfa = dfa };
-#else
-  re_match_context_t mctx;
-#endif
-  char *fastmap = (preg->fastmap != NULL && preg->fastmap_accurate
-		   && range && !preg->can_be_null) ? preg->fastmap : NULL;
-  RE_TRANSLATE_TYPE t = preg->translate;
-
-#if !(defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L))
-  memset (&mctx, '\0', sizeof (re_match_context_t));
-  mctx.dfa = dfa;
-#endif
-
-  extra_nmatch = (nmatch > preg->re_nsub) ? nmatch - (preg->re_nsub + 1) : 0;
-  nmatch -= extra_nmatch;
-
-  /* Check if the DFA haven't been compiled.  */
-  if (BE (preg->used == 0 || dfa->init_state == NULL
-	  || dfa->init_state_word == NULL || dfa->init_state_nl == NULL
-	  || dfa->init_state_begbuf == NULL, 0))
-    return REG_NOMATCH;
-
-#ifdef DEBUG
-  /* We assume front-end functions already check them.  */
-  assert (start + range >= 0 && start + range <= length);
-#endif
-
-  /* If initial states with non-begbuf contexts have no elements,
-     the regex must be anchored.  If preg->newline_anchor is set,
-     we'll never use init_state_nl, so do not check it.  */
-  if (dfa->init_state->nodes.nelem == 0
-      && dfa->init_state_word->nodes.nelem == 0
-      && (dfa->init_state_nl->nodes.nelem == 0
-	  || !preg->newline_anchor))
-    {
-      if (start != 0 && start + range != 0)
-        return REG_NOMATCH;
-      start = range = 0;
-    }
-
-  /* We must check the longest matching, if nmatch > 0.  */
-  fl_longest_match = (nmatch != 0 || dfa->nbackref);
-
-  err = re_string_allocate (&mctx.input, string, length, dfa->nodes_len + 1,
-			    preg->translate, preg->syntax & RE_ICASE, dfa);
-  if (BE (err != REG_NOERROR, 0))
-    goto free_return;
-  mctx.input.stop = stop;
-  mctx.input.raw_stop = stop;
-  mctx.input.newline_anchor = preg->newline_anchor;
-
-  err = match_ctx_init (&mctx, eflags, dfa->nbackref * 2);
-  if (BE (err != REG_NOERROR, 0))
-    goto free_return;
-
-  /* We will log all the DFA states through which the dfa pass,
-     if nmatch > 1, or this dfa has "multibyte node", which is a
-     back-reference or a node which can accept multibyte character or
-     multi character collating element.  */
-  if (nmatch > 1 || dfa->has_mb_node)
-    {
-      mctx.state_log = re_malloc (re_dfastate_t *, mctx.input.bufs_len + 1);
-      if (BE (mctx.state_log == NULL, 0))
-	{
-	  err = REG_ESPACE;
-	  goto free_return;
-	}
-    }
-  else
-    mctx.state_log = NULL;
-
-  match_first = start;
-  mctx.input.tip_context = (eflags & REG_NOTBOL) ? CONTEXT_BEGBUF
-			   : CONTEXT_NEWLINE | CONTEXT_BEGBUF;
-
-  /* Check incrementally whether of not the input string match.  */
-  incr = (range < 0) ? -1 : 1;
-  left_lim = (range < 0) ? start + range : start;
-  right_lim = (range < 0) ? start : start + range;
-  sb = dfa->mb_cur_max == 1;
-  match_kind =
-    (fastmap
-     ? ((sb || !(preg->syntax & RE_ICASE || t) ? 4 : 0)
-	| (range >= 0 ? 2 : 0)
-	| (t != NULL ? 1 : 0))
-     : 8);
-
-  for (;; match_first += incr)
-    {
-      err = REG_NOMATCH;
-      if (match_first < left_lim || right_lim < match_first)
-	goto free_return;
-
-      /* Advance as rapidly as possible through the string, until we
-	 find a plausible place to start matching.  This may be done
-	 with varying efficiency, so there are various possibilities:
-	 only the most common of them are specialized, in order to
-	 save on code size.  We use a switch statement for speed.  */
-      switch (match_kind)
-	{
-	case 8:
-	  /* No fastmap.  */
-	  break;
-
-	case 7:
-	  /* Fastmap with single-byte translation, match forward.  */
-	  while (BE (match_first < right_lim, 1)
-		 && !fastmap[t[(unsigned char) string[match_first]]])
-	    ++match_first;
-	  goto forward_match_found_start_or_reached_end;
-
-	case 6:
-	  /* Fastmap without translation, match forward.  */
-	  while (BE (match_first < right_lim, 1)
-		 && !fastmap[(unsigned char) string[match_first]])
-	    ++match_first;
-
-	forward_match_found_start_or_reached_end:
-	  if (BE (match_first == right_lim, 0))
-	    {
-	      ch = match_first >= length
-		       ? 0 : (unsigned char) string[match_first];
-	      if (!fastmap[t ? t[ch] : ch])
-		goto free_return;
-	    }
-	  break;
-
-	case 4:
-	case 5:
-	  /* Fastmap without multi-byte translation, match backwards.  */
-	  while (match_first >= left_lim)
-	    {
-	      ch = match_first >= length
-		       ? 0 : (unsigned char) string[match_first];
-	      if (fastmap[t ? t[ch] : ch])
-		break;
-	      --match_first;
-	    }
-	  if (match_first < left_lim)
-	    goto free_return;
-	  break;
-
-	default:
-	  /* In this case, we can't determine easily the current byte,
-	     since it might be a component byte of a multibyte
-	     character.  Then we use the constructed buffer instead.  */
-	  for (;;)
-	    {
-	      /* If MATCH_FIRST is out of the valid range, reconstruct the
-		 buffers.  */
-	      unsigned int offset = match_first - mctx.input.raw_mbs_idx;
-	      if (BE (offset >= (unsigned int) mctx.input.valid_raw_len, 0))
-		{
-		  err = re_string_reconstruct (&mctx.input, match_first,
-					       eflags);
-		  if (BE (err != REG_NOERROR, 0))
-		    goto free_return;
-
-		  offset = match_first - mctx.input.raw_mbs_idx;
-		}
-	      /* If MATCH_FIRST is out of the buffer, leave it as '\0'.
-		 Note that MATCH_FIRST must not be smaller than 0.  */
-	      ch = (match_first >= length
-		    ? 0 : re_string_byte_at (&mctx.input, offset));
-	      if (fastmap[ch])
-		break;
-	      match_first += incr;
-	      if (match_first < left_lim || match_first > right_lim)
-	        {
-	          err = REG_NOMATCH;
-	          goto free_return;
-	        }
-	    }
-	  break;
-	}
-
-      /* Reconstruct the buffers so that the matcher can assume that
-	 the matching starts from the beginning of the buffer.  */
-      err = re_string_reconstruct (&mctx.input, match_first, eflags);
-      if (BE (err != REG_NOERROR, 0))
-	goto free_return;
-
-#ifdef RE_ENABLE_I18N
-     /* Don't consider this char as a possible match start if it part,
-	yet isn't the head, of a multibyte character.  */
-      if (!sb && !re_string_first_byte (&mctx.input, 0))
-	continue;
-#endif
-
-      /* It seems to be appropriate one, then use the matcher.  */
-      /* We assume that the matching starts from 0.  */
-      mctx.state_log_top = mctx.nbkref_ents = mctx.max_mb_elem_len = 0;
-      match_last = check_matching (&mctx, fl_longest_match,
-				   range >= 0 ? &match_first : NULL);
-      if (match_last != -1)
-	{
-	  if (BE (match_last == -2, 0))
-	    {
-	      err = REG_ESPACE;
-	      goto free_return;
-	    }
-	  else
-	    {
-	      mctx.match_last = match_last;
-	      if ((!preg->no_sub && nmatch > 1) || dfa->nbackref)
-		{
-		  re_dfastate_t *pstate = mctx.state_log[match_last];
-		  mctx.last_node = check_halt_state_context (&mctx, pstate,
-							     match_last);
-		}
-	      if ((!preg->no_sub && nmatch > 1 && dfa->has_plural_match)
-		  || dfa->nbackref)
-		{
-		  err = prune_impossible_nodes (&mctx);
-		  if (err == REG_NOERROR)
-		    break;
-		  if (BE (err != REG_NOMATCH, 0))
-		    goto free_return;
-		  match_last = -1;
-		}
-	      else
-		break; /* We found a match.  */
-	    }
-	}
-
-      match_ctx_clean (&mctx);
-    }
-
-#ifdef DEBUG
-  assert (match_last != -1);
-  assert (err == REG_NOERROR);
-#endif
-
-  /* Set pmatch[] if we need.  */
-  if (nmatch > 0)
-    {
-      int reg_idx;
-
-      /* Initialize registers.  */
-      for (reg_idx = 1; reg_idx < nmatch; ++reg_idx)
-	pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1;
-
-      /* Set the points where matching start/end.  */
-      pmatch[0].rm_so = 0;
-      pmatch[0].rm_eo = mctx.match_last;
-
-      if (!preg->no_sub && nmatch > 1)
-	{
-	  err = set_regs (preg, &mctx, nmatch, pmatch,
-			  dfa->has_plural_match && dfa->nbackref > 0);
-	  if (BE (err != REG_NOERROR, 0))
-	    goto free_return;
-	}
-
-      /* At last, add the offset to the each registers, since we slided
-	 the buffers so that we could assume that the matching starts
-	 from 0.  */
-      for (reg_idx = 0; reg_idx < nmatch; ++reg_idx)
-	if (pmatch[reg_idx].rm_so != -1)
-	  {
-#ifdef RE_ENABLE_I18N
-	    if (BE (mctx.input.offsets_needed != 0, 0))
-	      {
-		pmatch[reg_idx].rm_so =
-		  (pmatch[reg_idx].rm_so == mctx.input.valid_len
-		   ? mctx.input.valid_raw_len
-		   : mctx.input.offsets[pmatch[reg_idx].rm_so]);
-		pmatch[reg_idx].rm_eo =
-		  (pmatch[reg_idx].rm_eo == mctx.input.valid_len
-		   ? mctx.input.valid_raw_len
-		   : mctx.input.offsets[pmatch[reg_idx].rm_eo]);
-	      }
-#else
-	    assert (mctx.input.offsets_needed == 0);
-#endif
-	    pmatch[reg_idx].rm_so += match_first;
-	    pmatch[reg_idx].rm_eo += match_first;
-	  }
-      for (reg_idx = 0; reg_idx < extra_nmatch; ++reg_idx)
-	{
-	  pmatch[nmatch + reg_idx].rm_so = -1;
-	  pmatch[nmatch + reg_idx].rm_eo = -1;
-	}
-
-      if (dfa->subexp_map)
-        for (reg_idx = 0; reg_idx + 1 < nmatch; reg_idx++)
-          if (dfa->subexp_map[reg_idx] != reg_idx)
-            {
-              pmatch[reg_idx + 1].rm_so
-                = pmatch[dfa->subexp_map[reg_idx] + 1].rm_so;
-              pmatch[reg_idx + 1].rm_eo
-                = pmatch[dfa->subexp_map[reg_idx] + 1].rm_eo;
-            }
-    }
-
- free_return:
-  re_free (mctx.state_log);
-  if (dfa->nbackref)
-    match_ctx_free (&mctx);
-  re_string_destruct (&mctx.input);
-  return err;
-}
-
-static reg_errcode_t
-prune_impossible_nodes (mctx)
-     re_match_context_t *mctx;
-{
-  const re_dfa_t *const dfa = mctx->dfa;
-  int halt_node, match_last;
-  reg_errcode_t ret;
-  re_dfastate_t **sifted_states;
-  re_dfastate_t **lim_states = NULL;
-  re_sift_context_t sctx;
-#ifdef DEBUG
-  assert (mctx->state_log != NULL);
-#endif
-  match_last = mctx->match_last;
-  halt_node = mctx->last_node;
-  sifted_states = re_malloc (re_dfastate_t *, match_last + 1);
-  if (BE (sifted_states == NULL, 0))
-    {
-      ret = REG_ESPACE;
-      goto free_return;
-    }
-  if (dfa->nbackref)
-    {
-      lim_states = re_malloc (re_dfastate_t *, match_last + 1);
-      if (BE (lim_states == NULL, 0))
-	{
-	  ret = REG_ESPACE;
-	  goto free_return;
-	}
-      while (1)
-	{
-	  memset (lim_states, '\0',
-		  sizeof (re_dfastate_t *) * (match_last + 1));
-	  sift_ctx_init (&sctx, sifted_states, lim_states, halt_node,
-			 match_last);
-	  ret = sift_states_backward (mctx, &sctx);
-	  re_node_set_free (&sctx.limits);
-	  if (BE (ret != REG_NOERROR, 0))
-	      goto free_return;
-	  if (sifted_states[0] != NULL || lim_states[0] != NULL)
-	    break;
-	  do
-	    {
-	      --match_last;
-	      if (match_last < 0)
-		{
-		  ret = REG_NOMATCH;
-		  goto free_return;
-		}
-	    } while (mctx->state_log[match_last] == NULL
-		     || !mctx->state_log[match_last]->halt);
-	  halt_node = check_halt_state_context (mctx,
-						mctx->state_log[match_last],
-						match_last);
-	}
-      ret = merge_state_array (dfa, sifted_states, lim_states,
-			       match_last + 1);
-      re_free (lim_states);
-      lim_states = NULL;
-      if (BE (ret != REG_NOERROR, 0))
-	goto free_return;
-    }
-  else
-    {
-      sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, match_last);
-      ret = sift_states_backward (mctx, &sctx);
-      re_node_set_free (&sctx.limits);
-      if (BE (ret != REG_NOERROR, 0))
-	goto free_return;
-      if (sifted_states[0] == NULL)
-	{
-	  ret = REG_NOMATCH;
-	  goto free_return;
-	}
-    }
-  re_free (mctx->state_log);
-  mctx->state_log = sifted_states;
-  sifted_states = NULL;
-  mctx->last_node = halt_node;
-  mctx->match_last = match_last;
-  ret = REG_NOERROR;
- free_return:
-  re_free (sifted_states);
-  re_free (lim_states);
-  return ret;
-}
-
-/* Acquire an initial state and return it.
-   We must select appropriate initial state depending on the context,
-   since initial states may have constraints like "\<", "^", etc..  */
-
-static inline re_dfastate_t *
-__attribute ((always_inline)) internal_function
-acquire_init_state_context (reg_errcode_t *err, const re_match_context_t *mctx,
-			    int idx)
-{
-  const re_dfa_t *const dfa = mctx->dfa;
-  if (dfa->init_state->has_constraint)
-    {
-      unsigned int context;
-      context = re_string_context_at (&mctx->input, idx - 1, mctx->eflags);
-      if (IS_WORD_CONTEXT (context))
-	return dfa->init_state_word;
-      else if (IS_ORDINARY_CONTEXT (context))
-	return dfa->init_state;
-      else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context))
-	return dfa->init_state_begbuf;
-      else if (IS_NEWLINE_CONTEXT (context))
-	return dfa->init_state_nl;
-      else if (IS_BEGBUF_CONTEXT (context))
-	{
-	  /* It is relatively rare case, then calculate on demand.  */
-	  return re_acquire_state_context (err, dfa,
-					   dfa->init_state->entrance_nodes,
-					   context);
-	}
-      else
-	/* Must not happen?  */
-	return dfa->init_state;
-    }
-  else
-    return dfa->init_state;
-}
-
-/* Check whether the regular expression match input string INPUT or not,
-   and return the index where the matching end, return -1 if not match,
-   or return -2 in case of an error.
-   FL_LONGEST_MATCH means we want the POSIX longest matching.
-   If P_MATCH_FIRST is not NULL, and the match fails, it is set to the
-   next place where we may want to try matching.
-   Note that the matcher assume that the maching starts from the current
-   index of the buffer.  */
-
-static int
-internal_function
-check_matching (re_match_context_t *mctx, int fl_longest_match,
-		int *p_match_first)
-{
-  const re_dfa_t *const dfa = mctx->dfa;
-  reg_errcode_t err;
-  int match = 0;
-  int match_last = -1;
-  int cur_str_idx = re_string_cur_idx (&mctx->input);
-  re_dfastate_t *cur_state;
-  int at_init_state = p_match_first != NULL;
-  int next_start_idx = cur_str_idx;
-
-  err = REG_NOERROR;
-  cur_state = acquire_init_state_context (&err, mctx, cur_str_idx);
-  /* An initial state must not be NULL (invalid).  */
-  if (BE (cur_state == NULL, 0))
-    {
-      assert (err == REG_ESPACE);
-      return -2;
-    }
-
-  if (mctx->state_log != NULL)
-    {
-      mctx->state_log[cur_str_idx] = cur_state;
-
-      /* Check OP_OPEN_SUBEXP in the initial state in case that we use them
-	 later.  E.g. Processing back references.  */
-      if (BE (dfa->nbackref, 0))
-	{
-	  at_init_state = 0;
-	  err = check_subexp_matching_top (mctx, &cur_state->nodes, 0);
-	  if (BE (err != REG_NOERROR, 0))
-	    return err;
-
-	  if (cur_state->has_backref)
-	    {
-	      err = transit_state_bkref (mctx, &cur_state->nodes);
-	      if (BE (err != REG_NOERROR, 0))
-	        return err;
-	    }
-	}
-    }
-
-  /* If the RE accepts NULL string.  */
-  if (BE (cur_state->halt, 0))
-    {
-      if (!cur_state->has_constraint
-	  || check_halt_state_context (mctx, cur_state, cur_str_idx))
-	{
-	  if (!fl_longest_match)
-	    return cur_str_idx;
-	  else
-	    {
-	      match_last = cur_str_idx;
-	      match = 1;
-	    }
-	}
-    }
-
-  while (!re_string_eoi (&mctx->input))
-    {
-      re_dfastate_t *old_state = cur_state;
-      int next_char_idx = re_string_cur_idx (&mctx->input) + 1;
-
-      if (BE (next_char_idx >= mctx->input.bufs_len, 0)
-          || (BE (next_char_idx >= mctx->input.valid_len, 0)
-              && mctx->input.valid_len < mctx->input.len))
-        {
-          err = extend_buffers (mctx);
-          if (BE (err != REG_NOERROR, 0))
-	    {
-	      assert (err == REG_ESPACE);
-	      return -2;
-	    }
-        }
-
-      cur_state = transit_state (&err, mctx, cur_state);
-      if (mctx->state_log != NULL)
-	cur_state = merge_state_with_log (&err, mctx, cur_state);
-
-      if (cur_state == NULL)
-	{
-	  /* Reached the invalid state or an error.  Try to recover a valid
-	     state using the state log, if available and if we have not
-	     already found a valid (even if not the longest) match.  */
-	  if (BE (err != REG_NOERROR, 0))
-	    return -2;
-
-	  if (mctx->state_log == NULL
-	      || (match && !fl_longest_match)
-	      || (cur_state = find_recover_state (&err, mctx)) == NULL)
-	    break;
-	}
-
-      if (BE (at_init_state, 0))
-	{
-	  if (old_state == cur_state)
-	    next_start_idx = next_char_idx;
-	  else
-	    at_init_state = 0;
-	}
-
-      if (cur_state->halt)
-	{
-	  /* Reached a halt state.
-	     Check the halt state can satisfy the current context.  */
-	  if (!cur_state->has_constraint
-	      || check_halt_state_context (mctx, cur_state,
-					   re_string_cur_idx (&mctx->input)))
-	    {
-	      /* We found an appropriate halt state.  */
-	      match_last = re_string_cur_idx (&mctx->input);
-	      match = 1;
-
-	      /* We found a match, do not modify match_first below.  */
-	      p_match_first = NULL;
-	      if (!fl_longest_match)
-		break;
-	    }
-	}
-    }
-
-  if (p_match_first)
-    *p_match_first += next_start_idx;
-
-  return match_last;
-}
-
-/* Check NODE match the current context.  */
-
-static int
-internal_function
-check_halt_node_context (const re_dfa_t *dfa, int node, unsigned int context)
-{
-  re_token_type_t type = dfa->nodes[node].type;
-  unsigned int constraint = dfa->nodes[node].constraint;
-  if (type != END_OF_RE)
-    return 0;
-  if (!constraint)
-    return 1;
-  if (NOT_SATISFY_NEXT_CONSTRAINT (constraint, context))
-    return 0;
-  return 1;
-}
-
-/* Check the halt state STATE match the current context.
-   Return 0 if not match, if the node, STATE has, is a halt node and
-   match the context, return the node.  */
-
-static int
-internal_function
-check_halt_state_context (const re_match_context_t *mctx,
-			  const re_dfastate_t *state, int idx)
-{
-  int i;
-  unsigned int context;
-#ifdef DEBUG
-  assert (state->halt);
-#endif
-  context = re_string_context_at (&mctx->input, idx, mctx->eflags);
-  for (i = 0; i < state->nodes.nelem; ++i)
-    if (check_halt_node_context (mctx->dfa, state->nodes.elems[i], context))
-      return state->nodes.elems[i];
-  return 0;
-}
-
-/* Compute the next node to which "NFA" transit from NODE("NFA" is a NFA
-   corresponding to the DFA).
-   Return the destination node, and update EPS_VIA_NODES, return -1 in case
-   of errors.  */
-
-static int
-internal_function
-proceed_next_node (const re_match_context_t *mctx, int nregs, regmatch_t *regs,
-		   int *pidx, int node, re_node_set *eps_via_nodes,
-		   struct re_fail_stack_t *fs)
-{
-  const re_dfa_t *const dfa = mctx->dfa;
-  int i, err;
-  if (IS_EPSILON_NODE (dfa->nodes[node].type))
-    {
-      re_node_set *cur_nodes = &mctx->state_log[*pidx]->nodes;
-      re_node_set *edests = &dfa->edests[node];
-      int dest_node;
-      err = re_node_set_insert (eps_via_nodes, node);
-      if (BE (err < 0, 0))
-	return -2;
-      /* Pick up a valid destination, or return -1 if none is found.  */
-      for (dest_node = -1, i = 0; i < edests->nelem; ++i)
-	{
-	  int candidate = edests->elems[i];
-	  if (!re_node_set_contains (cur_nodes, candidate))
-	    continue;
-          if (dest_node == -1)
-	    dest_node = candidate;
-
-          else
-	    {
-	      /* In order to avoid infinite loop like "(a*)*", return the second
-	         epsilon-transition if the first was already considered.  */
-	      if (re_node_set_contains (eps_via_nodes, dest_node))
-	        return candidate;
-
-	      /* Otherwise, push the second epsilon-transition on the fail stack.  */
-	      else if (fs != NULL
-		       && push_fail_stack (fs, *pidx, candidate, nregs, regs,
-				           eps_via_nodes))
-		return -2;
-
-	      /* We know we are going to exit.  */
-	      break;
-	    }
-	}
-      return dest_node;
-    }
-  else
-    {
-      int naccepted = 0;
-      re_token_type_t type = dfa->nodes[node].type;
-
-#ifdef RE_ENABLE_I18N
-      if (dfa->nodes[node].accept_mb)
-	naccepted = check_node_accept_bytes (dfa, node, &mctx->input, *pidx);
-      else
-#endif /* RE_ENABLE_I18N */
-      if (type == OP_BACK_REF)
-	{
-	  int subexp_idx = dfa->nodes[node].opr.idx + 1;
-	  naccepted = regs[subexp_idx].rm_eo - regs[subexp_idx].rm_so;
-	  if (fs != NULL)
-	    {
-	      if (regs[subexp_idx].rm_so == -1 || regs[subexp_idx].rm_eo == -1)
-		return -1;
-	      else if (naccepted)
-		{
-		  char *buf = (char *) re_string_get_buffer (&mctx->input);
-		  if (memcmp (buf + regs[subexp_idx].rm_so, buf + *pidx,
-			      naccepted) != 0)
-		    return -1;
-		}
-	    }
-
-	  if (naccepted == 0)
-	    {
-	      int dest_node;
-	      err = re_node_set_insert (eps_via_nodes, node);
-	      if (BE (err < 0, 0))
-		return -2;
-	      dest_node = dfa->edests[node].elems[0];
-	      if (re_node_set_contains (&mctx->state_log[*pidx]->nodes,
-					dest_node))
-		return dest_node;
-	    }
-	}
-
-      if (naccepted != 0
-	  || check_node_accept (mctx, dfa->nodes + node, *pidx))
-	{
-	  int dest_node = dfa->nexts[node];
-	  *pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted;
-	  if (fs && (*pidx > mctx->match_last || mctx->state_log[*pidx] == NULL
-		     || !re_node_set_contains (&mctx->state_log[*pidx]->nodes,
-					       dest_node)))
-	    return -1;
-	  re_node_set_empty (eps_via_nodes);
-	  return dest_node;
-	}
-    }
-  return -1;
-}
-
-static reg_errcode_t
-internal_function
-push_fail_stack (struct re_fail_stack_t *fs, int str_idx, int dest_node,
-		 int nregs, regmatch_t *regs, re_node_set *eps_via_nodes)
-{
-  reg_errcode_t err;
-  int num = fs->num++;
-  if (fs->num == fs->alloc)
-    {
-      struct re_fail_stack_ent_t *new_array;
-      new_array = realloc (fs->stack, (sizeof (struct re_fail_stack_ent_t)
-				       * fs->alloc * 2));
-      if (new_array == NULL)
-	return REG_ESPACE;
-      fs->alloc *= 2;
-      fs->stack = new_array;
-    }
-  fs->stack[num].idx = str_idx;
-  fs->stack[num].node = dest_node;
-  fs->stack[num].regs = re_malloc (regmatch_t, nregs);
-  if (fs->stack[num].regs == NULL)
-    return REG_ESPACE;
-  memcpy (fs->stack[num].regs, regs, sizeof (regmatch_t) * nregs);
-  err = re_node_set_init_copy (&fs->stack[num].eps_via_nodes, eps_via_nodes);
-  return err;
-}
-
-static int
-internal_function
-pop_fail_stack (struct re_fail_stack_t *fs, int *pidx, int nregs,
-		regmatch_t *regs, re_node_set *eps_via_nodes)
-{
-  int num = --fs->num;
-  assert (num >= 0);
-  *pidx = fs->stack[num].idx;
-  memcpy (regs, fs->stack[num].regs, sizeof (regmatch_t) * nregs);
-  re_node_set_free (eps_via_nodes);
-  re_free (fs->stack[num].regs);
-  *eps_via_nodes = fs->stack[num].eps_via_nodes;
-  return fs->stack[num].node;
-}
-
-/* Set the positions where the subexpressions are starts/ends to registers
-   PMATCH.
-   Note: We assume that pmatch[0] is already set, and
-   pmatch[i].rm_so == pmatch[i].rm_eo == -1 for 0 < i < nmatch.  */
-
-static reg_errcode_t
-internal_function
-set_regs (const regex_t *preg, const re_match_context_t *mctx, size_t nmatch,
-	  regmatch_t *pmatch, int fl_backtrack)
-{
-  const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer;
-  int idx, cur_node;
-  re_node_set eps_via_nodes;
-  struct re_fail_stack_t *fs;
-  struct re_fail_stack_t fs_body = { 0, 2, NULL };
-  regmatch_t *prev_idx_match;
-  int prev_idx_match_malloced = 0;
-
-#ifdef DEBUG
-  assert (nmatch > 1);
-  assert (mctx->state_log != NULL);
-#endif
-  if (fl_backtrack)
-    {
-      fs = &fs_body;
-      fs->stack = re_malloc (struct re_fail_stack_ent_t, fs->alloc);
-      if (fs->stack == NULL)
-	return REG_ESPACE;
-    }
-  else
-    fs = NULL;
-
-  cur_node = dfa->init_node;
-  re_node_set_init_empty (&eps_via_nodes);
-
-  if (__libc_use_alloca (nmatch * sizeof (regmatch_t)))
-    prev_idx_match = (regmatch_t *) alloca (nmatch * sizeof (regmatch_t));
-  else
-    {
-      prev_idx_match = re_malloc (regmatch_t, nmatch);
-      if (prev_idx_match == NULL)
-	{
-	  free_fail_stack_return (fs);
-	  return REG_ESPACE;
-	}
-      prev_idx_match_malloced = 1;
-    }
-  memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch);
-
-  for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;)
-    {
-      update_regs (dfa, pmatch, prev_idx_match, cur_node, idx, nmatch);
-
-      if (idx == pmatch[0].rm_eo && cur_node == mctx->last_node)
-	{
-	  int reg_idx;
-	  if (fs)
-	    {
-	      for (reg_idx = 0; reg_idx < nmatch; ++reg_idx)
-		if (pmatch[reg_idx].rm_so > -1 && pmatch[reg_idx].rm_eo == -1)
-		  break;
-	      if (reg_idx == nmatch)
-		{
-		  re_node_set_free (&eps_via_nodes);
-		  if (prev_idx_match_malloced)
-		    re_free (prev_idx_match);
-		  return free_fail_stack_return (fs);
-		}
-	      cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch,
-					 &eps_via_nodes);
-	    }
-	  else
-	    {
-	      re_node_set_free (&eps_via_nodes);
-	      if (prev_idx_match_malloced)
-		re_free (prev_idx_match);
-	      return REG_NOERROR;
-	    }
-	}
-
-      /* Proceed to next node.  */
-      cur_node = proceed_next_node (mctx, nmatch, pmatch, &idx, cur_node,
-				    &eps_via_nodes, fs);
-
-      if (BE (cur_node < 0, 0))
-	{
-	  if (BE (cur_node == -2, 0))
-	    {
-	      re_node_set_free (&eps_via_nodes);
-	      if (prev_idx_match_malloced)
-		re_free (prev_idx_match);
-	      free_fail_stack_return (fs);
-	      return REG_ESPACE;
-	    }
-	  if (fs)
-	    cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch,
-				       &eps_via_nodes);
-	  else
-	    {
-	      re_node_set_free (&eps_via_nodes);
-	      if (prev_idx_match_malloced)
-		re_free (prev_idx_match);
-	      return REG_NOMATCH;
-	    }
-	}
-    }
-  re_node_set_free (&eps_via_nodes);
-  if (prev_idx_match_malloced)
-    re_free (prev_idx_match);
-  return free_fail_stack_return (fs);
-}
-
-static reg_errcode_t
-internal_function
-free_fail_stack_return (struct re_fail_stack_t *fs)
-{
-  if (fs)
-    {
-      int fs_idx;
-      for (fs_idx = 0; fs_idx < fs->num; ++fs_idx)
-	{
-	  re_node_set_free (&fs->stack[fs_idx].eps_via_nodes);
-	  re_free (fs->stack[fs_idx].regs);
-	}
-      re_free (fs->stack);
-    }
-  return REG_NOERROR;
-}
-
-static void
-internal_function
-update_regs (const re_dfa_t *dfa, regmatch_t *pmatch,
-	     regmatch_t *prev_idx_match, int cur_node, int cur_idx, int nmatch)
-{
-  int type = dfa->nodes[cur_node].type;
-  if (type == OP_OPEN_SUBEXP)
-    {
-      int reg_num = dfa->nodes[cur_node].opr.idx + 1;
-
-      /* We are at the first node of this sub expression.  */
-      if (reg_num < nmatch)
-	{
-	  pmatch[reg_num].rm_so = cur_idx;
-	  pmatch[reg_num].rm_eo = -1;
-	}
-    }
-  else if (type == OP_CLOSE_SUBEXP)
-    {
-      int reg_num = dfa->nodes[cur_node].opr.idx + 1;
-      if (reg_num < nmatch)
-	{
-	  /* We are at the last node of this sub expression.  */
-	  if (pmatch[reg_num].rm_so < cur_idx)
-	    {
-	      pmatch[reg_num].rm_eo = cur_idx;
-	      /* This is a non-empty match or we are not inside an optional
-		 subexpression.  Accept this right away.  */
-	      memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch);
-	    }
-	  else
-	    {
-	      if (dfa->nodes[cur_node].opt_subexp
-		  && prev_idx_match[reg_num].rm_so != -1)
-		/* We transited through an empty match for an optional
-		   subexpression, like (a?)*, and this is not the subexp's
-		   first match.  Copy back the old content of the registers
-		   so that matches of an inner subexpression are undone as
-		   well, like in ((a?))*.  */
-		memcpy (pmatch, prev_idx_match, sizeof (regmatch_t) * nmatch);
-	      else
-		/* We completed a subexpression, but it may be part of
-		   an optional one, so do not update PREV_IDX_MATCH.  */
-		pmatch[reg_num].rm_eo = cur_idx;
-	    }
-	}
-    }
-}
-
-/* This function checks the STATE_LOG from the SCTX->last_str_idx to 0
-   and sift the nodes in each states according to the following rules.
-   Updated state_log will be wrote to STATE_LOG.
-
-   Rules: We throw away the Node `a' in the STATE_LOG[STR_IDX] if...
-     1. When STR_IDX == MATCH_LAST(the last index in the state_log):
-	If `a' isn't the LAST_NODE and `a' can't epsilon transit to
-	the LAST_NODE, we throw away the node `a'.
-     2. When 0 <= STR_IDX < MATCH_LAST and `a' accepts
-	string `s' and transit to `b':
-	i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw
-	   away the node `a'.
-	ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is
-	    thrown away, we throw away the node `a'.
-     3. When 0 <= STR_IDX < MATCH_LAST and 'a' epsilon transit to 'b':
-	i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the
-	   node `a'.
-	ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is thrown away,
-	    we throw away the node `a'.  */
-
-#define STATE_NODE_CONTAINS(state,node) \
-  ((state) != NULL && re_node_set_contains (&(state)->nodes, node))
-
-static reg_errcode_t
-internal_function
-sift_states_backward (const re_match_context_t *mctx, re_sift_context_t *sctx)
-{
-  reg_errcode_t err;
-  int null_cnt = 0;
-  int str_idx = sctx->last_str_idx;
-  re_node_set cur_dest;
-
-#ifdef DEBUG
-  assert (mctx->state_log != NULL && mctx->state_log[str_idx] != NULL);
-#endif
-
-  /* Build sifted state_log[str_idx].  It has the nodes which can epsilon
-     transit to the last_node and the last_node itself.  */
-  err = re_node_set_init_1 (&cur_dest, sctx->last_node);
-  if (BE (err != REG_NOERROR, 0))
-    return err;
-  err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest);
-  if (BE (err != REG_NOERROR, 0))
-    goto free_return;
-
-  /* Then check each states in the state_log.  */
-  while (str_idx > 0)
-    {
-      /* Update counters.  */
-      null_cnt = (sctx->sifted_states[str_idx] == NULL) ? null_cnt + 1 : 0;
-      if (null_cnt > mctx->max_mb_elem_len)
-	{
-	  memset (sctx->sifted_states, '\0',
-		  sizeof (re_dfastate_t *) * str_idx);
-	  re_node_set_free (&cur_dest);
-	  return REG_NOERROR;
-	}
-      re_node_set_empty (&cur_dest);
-      --str_idx;
-
-      if (mctx->state_log[str_idx])
-	{
-	  err = build_sifted_states (mctx, sctx, str_idx, &cur_dest);
-          if (BE (err != REG_NOERROR, 0))
-	    goto free_return;
-	}
-
-      /* Add all the nodes which satisfy the following conditions:
-	 - It can epsilon transit to a node in CUR_DEST.
-	 - It is in CUR_SRC.
-	 And update state_log.  */
-      err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest);
-      if (BE (err != REG_NOERROR, 0))
-	goto free_return;
-    }
-  err = REG_NOERROR;
- free_return:
-  re_node_set_free (&cur_dest);
-  return err;
-}
-
-static reg_errcode_t
-internal_function
-build_sifted_states (const re_match_context_t *mctx, re_sift_context_t *sctx,
-		     int str_idx, re_node_set *cur_dest)
-{
-  const re_dfa_t *const dfa = mctx->dfa;
-  const re_node_set *cur_src = &mctx->state_log[str_idx]->non_eps_nodes;
-  int i;
-
-  /* Then build the next sifted state.
-     We build the next sifted state on `cur_dest', and update
-     `sifted_states[str_idx]' with `cur_dest'.
-     Note:
-     `cur_dest' is the sifted state from `state_log[str_idx + 1]'.
-     `cur_src' points the node_set of the old `state_log[str_idx]'
-     (with the epsilon nodes pre-filtered out).  */
-  for (i = 0; i < cur_src->nelem; i++)
-    {
-      int prev_node = cur_src->elems[i];
-      int naccepted = 0;
-      int ret;
-
-#ifdef DEBUG
-      re_token_type_t type = dfa->nodes[prev_node].type;
-      assert (!IS_EPSILON_NODE (type));
-#endif
-#ifdef RE_ENABLE_I18N
-      /* If the node may accept `multi byte'.  */
-      if (dfa->nodes[prev_node].accept_mb)
-	naccepted = sift_states_iter_mb (mctx, sctx, prev_node,
-					 str_idx, sctx->last_str_idx);
-#endif /* RE_ENABLE_I18N */
-
-      /* We don't check backreferences here.
-	 See update_cur_sifted_state().  */
-      if (!naccepted
-	  && check_node_accept (mctx, dfa->nodes + prev_node, str_idx)
-	  && STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + 1],
-				  dfa->nexts[prev_node]))
-	naccepted = 1;
-
-      if (naccepted == 0)
-	continue;
-
-      if (sctx->limits.nelem)
-	{
-	  int to_idx = str_idx + naccepted;
-	  if (check_dst_limits (mctx, &sctx->limits,
-				dfa->nexts[prev_node], to_idx,
-				prev_node, str_idx))
-	    continue;
-	}
-      ret = re_node_set_insert (cur_dest, prev_node);
-      if (BE (ret == -1, 0))
-	return REG_ESPACE;
-    }
-
-  return REG_NOERROR;
-}
-
-/* Helper functions.  */
-
-static reg_errcode_t
-internal_function
-clean_state_log_if_needed (re_match_context_t *mctx, int next_state_log_idx)
-{
-  int top = mctx->state_log_top;
-
-  if (next_state_log_idx >= mctx->input.bufs_len
-      || (next_state_log_idx >= mctx->input.valid_len
-	  && mctx->input.valid_len < mctx->input.len))
-    {
-      reg_errcode_t err;
-      err = extend_buffers (mctx);
-      if (BE (err != REG_NOERROR, 0))
-	return err;
-    }
-
-  if (top < next_state_log_idx)
-    {
-      memset (mctx->state_log + top + 1, '\0',
-	      sizeof (re_dfastate_t *) * (next_state_log_idx - top));
-      mctx->state_log_top = next_state_log_idx;
-    }
-  return REG_NOERROR;
-}
-
-static reg_errcode_t
-internal_function
-merge_state_array (const re_dfa_t *dfa, re_dfastate_t **dst,
-		   re_dfastate_t **src, int num)
-{
-  int st_idx;
-  reg_errcode_t err;
-  for (st_idx = 0; st_idx < num; ++st_idx)
-    {
-      if (dst[st_idx] == NULL)
-	dst[st_idx] = src[st_idx];
-      else if (src[st_idx] != NULL)
-	{
-	  re_node_set merged_set;
-	  err = re_node_set_init_union (&merged_set, &dst[st_idx]->nodes,
-					&src[st_idx]->nodes);
-	  if (BE (err != REG_NOERROR, 0))
-	    return err;
-	  dst[st_idx] = re_acquire_state (&err, dfa, &merged_set);
-	  re_node_set_free (&merged_set);
-	  if (BE (err != REG_NOERROR, 0))
-	    return err;
-	}
-    }
-  return REG_NOERROR;
-}
-
-static reg_errcode_t
-internal_function
-update_cur_sifted_state (const re_match_context_t *mctx,
-			 re_sift_context_t *sctx, int str_idx,
-			 re_node_set *dest_nodes)
-{
-  const re_dfa_t *const dfa = mctx->dfa;
-  reg_errcode_t err = REG_NOERROR;
-  const re_node_set *candidates;
-  candidates = ((mctx->state_log[str_idx] == NULL) ? NULL
-		: &mctx->state_log[str_idx]->nodes);
-
-  if (dest_nodes->nelem == 0)
-    sctx->sifted_states[str_idx] = NULL;
-  else
-    {
-      if (candidates)
-	{
-	  /* At first, add the nodes which can epsilon transit to a node in
-	     DEST_NODE.  */
-	  err = add_epsilon_src_nodes (dfa, dest_nodes, candidates);
-	  if (BE (err != REG_NOERROR, 0))
-	    return err;
-
-	  /* Then, check the limitations in the current sift_context.  */
-	  if (sctx->limits.nelem)
-	    {
-	      err = check_subexp_limits (dfa, dest_nodes, candidates, &sctx->limits,
-					 mctx->bkref_ents, str_idx);
-	      if (BE (err != REG_NOERROR, 0))
-		return err;
-	    }
-	}
-
-      sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes);
-      if (BE (err != REG_NOERROR, 0))
-	return err;
-    }
-
-  if (candidates && mctx->state_log[str_idx]->has_backref)
-    {
-      err = sift_states_bkref (mctx, sctx, str_idx, candidates);
-      if (BE (err != REG_NOERROR, 0))
-	return err;
-    }
-  return REG_NOERROR;
-}
-
-static reg_errcode_t
-internal_function
-add_epsilon_src_nodes (const re_dfa_t *dfa, re_node_set *dest_nodes,
-		       const re_node_set *candidates)
-{
-  reg_errcode_t err = REG_NOERROR;
-  int i;
-
-  re_dfastate_t *state = re_acquire_state (&err, dfa, dest_nodes);
-  if (BE (err != REG_NOERROR, 0))
-    return err;
-
-  if (!state->inveclosure.alloc)
-    {
-      err = re_node_set_alloc (&state->inveclosure, dest_nodes->nelem);
-      if (BE (err != REG_NOERROR, 0))
-        return REG_ESPACE;
-      for (i = 0; i < dest_nodes->nelem; i++)
-        re_node_set_merge (&state->inveclosure,
-			   dfa->inveclosures + dest_nodes->elems[i]);
-    }
-  return re_node_set_add_intersect (dest_nodes, candidates,
-				    &state->inveclosure);
-}
-
-static reg_errcode_t
-internal_function
-sub_epsilon_src_nodes (const re_dfa_t *dfa, int node, re_node_set *dest_nodes,
-		       const re_node_set *candidates)
-{
-    int ecl_idx;
-    reg_errcode_t err;
-    re_node_set *inv_eclosure = dfa->inveclosures + node;
-    re_node_set except_nodes;
-    re_node_set_init_empty (&except_nodes);
-    for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx)
-      {
-	int cur_node = inv_eclosure->elems[ecl_idx];
-	if (cur_node == node)
-	  continue;
-	if (IS_EPSILON_NODE (dfa->nodes[cur_node].type))
-	  {
-	    int edst1 = dfa->edests[cur_node].elems[0];
-	    int edst2 = ((dfa->edests[cur_node].nelem > 1)
-			 ? dfa->edests[cur_node].elems[1] : -1);
-	    if ((!re_node_set_contains (inv_eclosure, edst1)
-		 && re_node_set_contains (dest_nodes, edst1))
-		|| (edst2 > 0
-		    && !re_node_set_contains (inv_eclosure, edst2)
-		    && re_node_set_contains (dest_nodes, edst2)))
-	      {
-		err = re_node_set_add_intersect (&except_nodes, candidates,
-						 dfa->inveclosures + cur_node);
-		if (BE (err != REG_NOERROR, 0))
-		  {
-		    re_node_set_free (&except_nodes);
-		    return err;
-		  }
-	      }
-	  }
-      }
-    for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx)
-      {
-	int cur_node = inv_eclosure->elems[ecl_idx];
-	if (!re_node_set_contains (&except_nodes, cur_node))
-	  {
-	    int idx = re_node_set_contains (dest_nodes, cur_node) - 1;
-	    re_node_set_remove_at (dest_nodes, idx);
-	  }
-      }
-    re_node_set_free (&except_nodes);
-    return REG_NOERROR;
-}
-
-static int
-internal_function
-check_dst_limits (const re_match_context_t *mctx, re_node_set *limits,
-		  int dst_node, int dst_idx, int src_node, int src_idx)
-{
-  const re_dfa_t *const dfa = mctx->dfa;
-  int lim_idx, src_pos, dst_pos;
-
-  int dst_bkref_idx = search_cur_bkref_entry (mctx, dst_idx);
-  int src_bkref_idx = search_cur_bkref_entry (mctx, src_idx);
-  for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx)
-    {
-      int subexp_idx;
-      struct re_backref_cache_entry *ent;
-      ent = mctx->bkref_ents + limits->elems[lim_idx];
-      subexp_idx = dfa->nodes[ent->node].opr.idx;
-
-      dst_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx],
-					   subexp_idx, dst_node, dst_idx,
-					   dst_bkref_idx);
-      src_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx],
-					   subexp_idx, src_node, src_idx,
-					   src_bkref_idx);
-
-      /* In case of:
-	 <src> <dst> ( <subexp> )
-	 ( <subexp> ) <src> <dst>
-	 ( <subexp1> <src> <subexp2> <dst> <subexp3> )  */
-      if (src_pos == dst_pos)
-	continue; /* This is unrelated limitation.  */
-      else
-	return 1;
-    }
-  return 0;
-}
-
-static int
-internal_function
-check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, int boundaries,
-			     int subexp_idx, int from_node, int bkref_idx)
-{
-  const re_dfa_t *const dfa = mctx->dfa;
-  const re_node_set *eclosures = dfa->eclosures + from_node;
-  int node_idx;
-
-  /* Else, we are on the boundary: examine the nodes on the epsilon
-     closure.  */
-  for (node_idx = 0; node_idx < eclosures->nelem; ++node_idx)
-    {
-      int node = eclosures->elems[node_idx];
-      switch (dfa->nodes[node].type)
-	{
-	case OP_BACK_REF:
-	  if (bkref_idx != -1)
-	    {
-	      struct re_backref_cache_entry *ent = mctx->bkref_ents + bkref_idx;
-	      do
-	        {
-		  int dst, cpos;
-
-		  if (ent->node != node)
-		    continue;
-
-		  if (subexp_idx < BITSET_WORD_BITS
-		      && !(ent->eps_reachable_subexps_map
-			   & ((bitset_word_t) 1 << subexp_idx)))
-		    continue;
-
-		  /* Recurse trying to reach the OP_OPEN_SUBEXP and
-		     OP_CLOSE_SUBEXP cases below.  But, if the
-		     destination node is the same node as the source
-		     node, don't recurse because it would cause an
-		     infinite loop: a regex that exhibits this behavior
-		     is ()\1*\1*  */
-		  dst = dfa->edests[node].elems[0];
-		  if (dst == from_node)
-		    {
-		      if (boundaries & 1)
-		        return -1;
-		      else /* if (boundaries & 2) */
-		        return 0;
-		    }
-
-		  cpos =
-		    check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx,
-						 dst, bkref_idx);
-		  if (cpos == -1 /* && (boundaries & 1) */)
-		    return -1;
-		  if (cpos == 0 && (boundaries & 2))
-		    return 0;
-
-		  if (subexp_idx < BITSET_WORD_BITS)
-		    ent->eps_reachable_subexps_map
-		      &= ~((bitset_word_t) 1 << subexp_idx);
-	        }
-	      while (ent++->more);
-	    }
-	  break;
-
-	case OP_OPEN_SUBEXP:
-	  if ((boundaries & 1) && subexp_idx == dfa->nodes[node].opr.idx)
-	    return -1;
-	  break;
-
-	case OP_CLOSE_SUBEXP:
-	  if ((boundaries & 2) && subexp_idx == dfa->nodes[node].opr.idx)
-	    return 0;
-	  break;
-
-	default:
-	    break;
-	}
-    }
-
-  return (boundaries & 2) ? 1 : 0;
-}
-
-static int
-internal_function
-check_dst_limits_calc_pos (const re_match_context_t *mctx, int limit,
-			   int subexp_idx, int from_node, int str_idx,
-			   int bkref_idx)
-{
-  struct re_backref_cache_entry *lim = mctx->bkref_ents + limit;
-  int boundaries;
-
-  /* If we are outside the range of the subexpression, return -1 or 1.  */
-  if (str_idx < lim->subexp_from)
-    return -1;
-
-  if (lim->subexp_to < str_idx)
-    return 1;
-
-  /* If we are within the subexpression, return 0.  */
-  boundaries = (str_idx == lim->subexp_from);
-  boundaries |= (str_idx == lim->subexp_to) << 1;
-  if (boundaries == 0)
-    return 0;
-
-  /* Else, examine epsilon closure.  */
-  return check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx,
-				      from_node, bkref_idx);
-}
-
-/* Check the limitations of sub expressions LIMITS, and remove the nodes
-   which are against limitations from DEST_NODES. */
-
-static reg_errcode_t
-internal_function
-check_subexp_limits (const re_dfa_t *dfa, re_node_set *dest_nodes,
-		     const re_node_set *candidates, re_node_set *limits,
-		     struct re_backref_cache_entry *bkref_ents, int str_idx)
-{
-  reg_errcode_t err;
-  int node_idx, lim_idx;
-
-  for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx)
-    {
-      int subexp_idx;
-      struct re_backref_cache_entry *ent;
-      ent = bkref_ents + limits->elems[lim_idx];
-
-      if (str_idx <= ent->subexp_from || ent->str_idx < str_idx)
-	continue; /* This is unrelated limitation.  */
-
-      subexp_idx = dfa->nodes[ent->node].opr.idx;
-      if (ent->subexp_to == str_idx)
-	{
-	  int ops_node = -1;
-	  int cls_node = -1;
-	  for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
-	    {
-	      int node = dest_nodes->elems[node_idx];
-	      re_token_type_t type = dfa->nodes[node].type;
-	      if (type == OP_OPEN_SUBEXP
-		  && subexp_idx == dfa->nodes[node].opr.idx)
-		ops_node = node;
-	      else if (type == OP_CLOSE_SUBEXP
-		       && subexp_idx == dfa->nodes[node].opr.idx)
-		cls_node = node;
-	    }
-
-	  /* Check the limitation of the open subexpression.  */
-	  /* Note that (ent->subexp_to = str_idx != ent->subexp_from).  */
-	  if (ops_node >= 0)
-	    {
-	      err = sub_epsilon_src_nodes (dfa, ops_node, dest_nodes,
-					   candidates);
-	      if (BE (err != REG_NOERROR, 0))
-		return err;
-	    }
-
-	  /* Check the limitation of the close subexpression.  */
-	  if (cls_node >= 0)
-	    for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
-	      {
-		int node = dest_nodes->elems[node_idx];
-		if (!re_node_set_contains (dfa->inveclosures + node,
-					   cls_node)
-		    && !re_node_set_contains (dfa->eclosures + node,
-					      cls_node))
-		  {
-		    /* It is against this limitation.
-		       Remove it form the current sifted state.  */
-		    err = sub_epsilon_src_nodes (dfa, node, dest_nodes,
-						 candidates);
-		    if (BE (err != REG_NOERROR, 0))
-		      return err;
-		    --node_idx;
-		  }
-	      }
-	}
-      else /* (ent->subexp_to != str_idx)  */
-	{
-	  for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
-	    {
-	      int node = dest_nodes->elems[node_idx];
-	      re_token_type_t type = dfa->nodes[node].type;
-	      if (type == OP_CLOSE_SUBEXP || type == OP_OPEN_SUBEXP)
-		{
-		  if (subexp_idx != dfa->nodes[node].opr.idx)
-		    continue;
-		  /* It is against this limitation.
-		     Remove it form the current sifted state.  */
-		  err = sub_epsilon_src_nodes (dfa, node, dest_nodes,
-					       candidates);
-		  if (BE (err != REG_NOERROR, 0))
-		    return err;
-		}
-	    }
-	}
-    }
-  return REG_NOERROR;
-}
-
-static reg_errcode_t
-internal_function
-sift_states_bkref (const re_match_context_t *mctx, re_sift_context_t *sctx,
-		   int str_idx, const re_node_set *candidates)
-{
-  const re_dfa_t *const dfa = mctx->dfa;
-  reg_errcode_t err;
-  int node_idx, node;
-  re_sift_context_t local_sctx;
-  int first_idx = search_cur_bkref_entry (mctx, str_idx);
-
-  if (first_idx == -1)
-    return REG_NOERROR;
-
-  local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized.  */
-
-  for (node_idx = 0; node_idx < candidates->nelem; ++node_idx)
-    {
-      int enabled_idx;
-      re_token_type_t type;
-      struct re_backref_cache_entry *entry;
-      node = candidates->elems[node_idx];
-      type = dfa->nodes[node].type;
-      /* Avoid infinite loop for the REs like "()\1+".  */
-      if (node == sctx->last_node && str_idx == sctx->last_str_idx)
-	continue;
-      if (type != OP_BACK_REF)
-	continue;
-
-      entry = mctx->bkref_ents + first_idx;
-      enabled_idx = first_idx;
-      do
-	{
-	  int subexp_len;
-	  int to_idx;
-	  int dst_node;
-	  int ret;
-	  re_dfastate_t *cur_state;
-
-	  if (entry->node != node)
-	    continue;
-	  subexp_len = entry->subexp_to - entry->subexp_from;
-	  to_idx = str_idx + subexp_len;
-	  dst_node = (subexp_len ? dfa->nexts[node]
-		      : dfa->edests[node].elems[0]);
-
-	  if (to_idx > sctx->last_str_idx
-	      || sctx->sifted_states[to_idx] == NULL
-	      || !STATE_NODE_CONTAINS (sctx->sifted_states[to_idx], dst_node)
-	      || check_dst_limits (mctx, &sctx->limits, node,
-				   str_idx, dst_node, to_idx))
-	    continue;
-
-	  if (local_sctx.sifted_states == NULL)
-	    {
-	      local_sctx = *sctx;
-	      err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits);
-	      if (BE (err != REG_NOERROR, 0))
-		goto free_return;
-	    }
-	  local_sctx.last_node = node;
-	  local_sctx.last_str_idx = str_idx;
-	  ret = re_node_set_insert (&local_sctx.limits, enabled_idx);
-	  if (BE (ret < 0, 0))
-	    {
-	      err = REG_ESPACE;
-	      goto free_return;
-	    }
-	  cur_state = local_sctx.sifted_states[str_idx];
-	  err = sift_states_backward (mctx, &local_sctx);
-	  if (BE (err != REG_NOERROR, 0))
-	    goto free_return;
-	  if (sctx->limited_states != NULL)
-	    {
-	      err = merge_state_array (dfa, sctx->limited_states,
-				       local_sctx.sifted_states,
-				       str_idx + 1);
-	      if (BE (err != REG_NOERROR, 0))
-		goto free_return;
-	    }
-	  local_sctx.sifted_states[str_idx] = cur_state;
-	  re_node_set_remove (&local_sctx.limits, enabled_idx);
-
-	  /* mctx->bkref_ents may have changed, reload the pointer.  */
-          entry = mctx->bkref_ents + enabled_idx;
-	}
-      while (enabled_idx++, entry++->more);
-    }
-  err = REG_NOERROR;
- free_return:
-  if (local_sctx.sifted_states != NULL)
-    {
-      re_node_set_free (&local_sctx.limits);
-    }
-
-  return err;
-}
-
-
-#ifdef RE_ENABLE_I18N
-static int
-internal_function
-sift_states_iter_mb (const re_match_context_t *mctx, re_sift_context_t *sctx,
-		     int node_idx, int str_idx, int max_str_idx)
-{
-  const re_dfa_t *const dfa = mctx->dfa;
-  int naccepted;
-  /* Check the node can accept `multi byte'.  */
-  naccepted = check_node_accept_bytes (dfa, node_idx, &mctx->input, str_idx);
-  if (naccepted > 0 && str_idx + naccepted <= max_str_idx &&
-      !STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + naccepted],
-			    dfa->nexts[node_idx]))
-    /* The node can't accept the `multi byte', or the
-       destination was already thrown away, then the node
-       could't accept the current input `multi byte'.   */
-    naccepted = 0;
-  /* Otherwise, it is sure that the node could accept
-     `naccepted' bytes input.  */
-  return naccepted;
-}
-#endif /* RE_ENABLE_I18N */
-
-
-/* Functions for state transition.  */
-
-/* Return the next state to which the current state STATE will transit by
-   accepting the current input byte, and update STATE_LOG if necessary.
-   If STATE can accept a multibyte char/collating element/back reference
-   update the destination of STATE_LOG.  */
-
-static re_dfastate_t *
-internal_function
-transit_state (reg_errcode_t *err, re_match_context_t *mctx,
-	       re_dfastate_t *state)
-{
-  re_dfastate_t **trtable;
-  unsigned char ch;
-
-#ifdef RE_ENABLE_I18N
-  /* If the current state can accept multibyte.  */
-  if (BE (state->accept_mb, 0))
-    {
-      *err = transit_state_mb (mctx, state);
-      if (BE (*err != REG_NOERROR, 0))
-	return NULL;
-    }
-#endif /* RE_ENABLE_I18N */
-
-  /* Then decide the next state with the single byte.  */
-#if 0
-  if (0)
-    /* don't use transition table  */
-    return transit_state_sb (err, mctx, state);
-#endif
-
-  /* Use transition table  */
-  ch = re_string_fetch_byte (&mctx->input);
-  for (;;)
-    {
-      trtable = state->trtable;
-      if (BE (trtable != NULL, 1))
-	return trtable[ch];
-
-      trtable = state->word_trtable;
-      if (BE (trtable != NULL, 1))
-        {
-	  unsigned int context;
-	  context
-	    = re_string_context_at (&mctx->input,
-				    re_string_cur_idx (&mctx->input) - 1,
-				    mctx->eflags);
-	  if (IS_WORD_CONTEXT (context))
-	    return trtable[ch + SBC_MAX];
-	  else
-	    return trtable[ch];
-	}
-
-      if (!build_trtable (mctx->dfa, state))
-	{
-	  *err = REG_ESPACE;
-	  return NULL;
-	}
-
-      /* Retry, we now have a transition table.  */
-    }
-}
-
-/* Update the state_log if we need */
-re_dfastate_t *
-internal_function
-merge_state_with_log (reg_errcode_t *err, re_match_context_t *mctx,
-		      re_dfastate_t *next_state)
-{
-  const re_dfa_t *const dfa = mctx->dfa;
-  int cur_idx = re_string_cur_idx (&mctx->input);
-
-  if (cur_idx > mctx->state_log_top)
-    {
-      mctx->state_log[cur_idx] = next_state;
-      mctx->state_log_top = cur_idx;
-    }
-  else if (mctx->state_log[cur_idx] == 0)
-    {
-      mctx->state_log[cur_idx] = next_state;
-    }
-  else
-    {
-      re_dfastate_t *pstate;
-      unsigned int context;
-      re_node_set next_nodes, *log_nodes, *table_nodes = NULL;
-      /* If (state_log[cur_idx] != 0), it implies that cur_idx is
-         the destination of a multibyte char/collating element/
-         back reference.  Then the next state is the union set of
-         these destinations and the results of the transition table.  */
-      pstate = mctx->state_log[cur_idx];
-      log_nodes = pstate->entrance_nodes;
-      if (next_state != NULL)
-        {
-          table_nodes = next_state->entrance_nodes;
-          *err = re_node_set_init_union (&next_nodes, table_nodes,
-					     log_nodes);
-          if (BE (*err != REG_NOERROR, 0))
-	    return NULL;
-        }
-      else
-        next_nodes = *log_nodes;
-      /* Note: We already add the nodes of the initial state,
-	 then we don't need to add them here.  */
-
-      context = re_string_context_at (&mctx->input,
-				      re_string_cur_idx (&mctx->input) - 1,
-				      mctx->eflags);
-      next_state = mctx->state_log[cur_idx]
-        = re_acquire_state_context (err, dfa, &next_nodes, context);
-      /* We don't need to check errors here, since the return value of
-         this function is next_state and ERR is already set.  */
-
-      if (table_nodes != NULL)
-        re_node_set_free (&next_nodes);
-    }
-
-  if (BE (dfa->nbackref, 0) && next_state != NULL)
-    {
-      /* Check OP_OPEN_SUBEXP in the current state in case that we use them
-	 later.  We must check them here, since the back references in the
-	 next state might use them.  */
-      *err = check_subexp_matching_top (mctx, &next_state->nodes,
-					cur_idx);
-      if (BE (*err != REG_NOERROR, 0))
-	return NULL;
-
-      /* If the next state has back references.  */
-      if (next_state->has_backref)
-	{
-	  *err = transit_state_bkref (mctx, &next_state->nodes);
-	  if (BE (*err != REG_NOERROR, 0))
-	    return NULL;
-	  next_state = mctx->state_log[cur_idx];
-	}
-    }
-
-  return next_state;
-}
-
-/* Skip bytes in the input that correspond to part of a
-   multi-byte match, then look in the log for a state
-   from which to restart matching.  */
-re_dfastate_t *
-internal_function
-find_recover_state (reg_errcode_t *err, re_match_context_t *mctx)
-{
-  re_dfastate_t *cur_state;
-  do
-    {
-      int max = mctx->state_log_top;
-      int cur_str_idx = re_string_cur_idx (&mctx->input);
-
-      do
-	{
-          if (++cur_str_idx > max)
-            return NULL;
-          re_string_skip_bytes (&mctx->input, 1);
-	}
-      while (mctx->state_log[cur_str_idx] == NULL);
-
-      cur_state = merge_state_with_log (err, mctx, NULL);
-    }
-  while (*err == REG_NOERROR && cur_state == NULL);
-  return cur_state;
-}
-
-/* Helper functions for transit_state.  */
-
-/* From the node set CUR_NODES, pick up the nodes whose types are
-   OP_OPEN_SUBEXP and which have corresponding back references in the regular
-   expression. And register them to use them later for evaluating the
-   correspoding back references.  */
-
-static reg_errcode_t
-internal_function
-check_subexp_matching_top (re_match_context_t *mctx, re_node_set *cur_nodes,
-			   int str_idx)
-{
-  const re_dfa_t *const dfa = mctx->dfa;
-  int node_idx;
-  reg_errcode_t err;
-
-  /* TODO: This isn't efficient.
-	   Because there might be more than one nodes whose types are
-	   OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all
-	   nodes.
-	   E.g. RE: (a){2}  */
-  for (node_idx = 0; node_idx < cur_nodes->nelem; ++node_idx)
-    {
-      int node = cur_nodes->elems[node_idx];
-      if (dfa->nodes[node].type == OP_OPEN_SUBEXP
-	  && dfa->nodes[node].opr.idx < BITSET_WORD_BITS
-	  && (dfa->used_bkref_map
-	      & ((bitset_word_t) 1 << dfa->nodes[node].opr.idx)))
-	{
-	  err = match_ctx_add_subtop (mctx, node, str_idx);
-	  if (BE (err != REG_NOERROR, 0))
-	    return err;
-	}
-    }
-  return REG_NOERROR;
-}
-
-#if 0
-/* Return the next state to which the current state STATE will transit by
-   accepting the current input byte.  */
-
-static re_dfastate_t *
-transit_state_sb (reg_errcode_t *err, re_match_context_t *mctx,
-		  re_dfastate_t *state)
-{
-  const re_dfa_t *const dfa = mctx->dfa;
-  re_node_set next_nodes;
-  re_dfastate_t *next_state;
-  int node_cnt, cur_str_idx = re_string_cur_idx (&mctx->input);
-  unsigned int context;
-
-  *err = re_node_set_alloc (&next_nodes, state->nodes.nelem + 1);
-  if (BE (*err != REG_NOERROR, 0))
-    return NULL;
-  for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt)
-    {
-      int cur_node = state->nodes.elems[node_cnt];
-      if (check_node_accept (mctx, dfa->nodes + cur_node, cur_str_idx))
-	{
-	  *err = re_node_set_merge (&next_nodes,
-				    dfa->eclosures + dfa->nexts[cur_node]);
-	  if (BE (*err != REG_NOERROR, 0))
-	    {
-	      re_node_set_free (&next_nodes);
-	      return NULL;
-	    }
-	}
-    }
-  context = re_string_context_at (&mctx->input, cur_str_idx, mctx->eflags);
-  next_state = re_acquire_state_context (err, dfa, &next_nodes, context);
-  /* We don't need to check errors here, since the return value of
-     this function is next_state and ERR is already set.  */
-
-  re_node_set_free (&next_nodes);
-  re_string_skip_bytes (&mctx->input, 1);
-  return next_state;
-}
-#endif
-
-#ifdef RE_ENABLE_I18N
-static reg_errcode_t
-internal_function
-transit_state_mb (re_match_context_t *mctx, re_dfastate_t *pstate)
-{
-  const re_dfa_t *const dfa = mctx->dfa;
-  reg_errcode_t err;
-  int i;
-
-  for (i = 0; i < pstate->nodes.nelem; ++i)
-    {
-      re_node_set dest_nodes, *new_nodes;
-      int cur_node_idx = pstate->nodes.elems[i];
-      int naccepted, dest_idx;
-      unsigned int context;
-      re_dfastate_t *dest_state;
-
-      if (!dfa->nodes[cur_node_idx].accept_mb)
-        continue;
-
-      if (dfa->nodes[cur_node_idx].constraint)
-	{
-	  context = re_string_context_at (&mctx->input,
-					  re_string_cur_idx (&mctx->input),
-					  mctx->eflags);
-	  if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint,
-					   context))
-	    continue;
-	}
-
-      /* How many bytes the node can accept?  */
-      naccepted = check_node_accept_bytes (dfa, cur_node_idx, &mctx->input,
-					   re_string_cur_idx (&mctx->input));
-      if (naccepted == 0)
-	continue;
-
-      /* The node can accepts `naccepted' bytes.  */
-      dest_idx = re_string_cur_idx (&mctx->input) + naccepted;
-      mctx->max_mb_elem_len = ((mctx->max_mb_elem_len < naccepted) ? naccepted
-			       : mctx->max_mb_elem_len);
-      err = clean_state_log_if_needed (mctx, dest_idx);
-      if (BE (err != REG_NOERROR, 0))
-	return err;
-#ifdef DEBUG
-      assert (dfa->nexts[cur_node_idx] != -1);
-#endif
-      new_nodes = dfa->eclosures + dfa->nexts[cur_node_idx];
-
-      dest_state = mctx->state_log[dest_idx];
-      if (dest_state == NULL)
-	dest_nodes = *new_nodes;
-      else
-	{
-	  err = re_node_set_init_union (&dest_nodes,
-					dest_state->entrance_nodes, new_nodes);
-	  if (BE (err != REG_NOERROR, 0))
-	    return err;
-	}
-      context = re_string_context_at (&mctx->input, dest_idx - 1,
-				      mctx->eflags);
-      mctx->state_log[dest_idx]
-	= re_acquire_state_context (&err, dfa, &dest_nodes, context);
-      if (dest_state != NULL)
-	re_node_set_free (&dest_nodes);
-      if (BE (mctx->state_log[dest_idx] == NULL && err != REG_NOERROR, 0))
-	return err;
-    }
-  return REG_NOERROR;
-}
-#endif /* RE_ENABLE_I18N */
-
-static reg_errcode_t
-internal_function
-transit_state_bkref (re_match_context_t *mctx, const re_node_set *nodes)
-{
-  const re_dfa_t *const dfa = mctx->dfa;
-  reg_errcode_t err;
-  int i;
-  int cur_str_idx = re_string_cur_idx (&mctx->input);
-
-  for (i = 0; i < nodes->nelem; ++i)
-    {
-      int dest_str_idx, prev_nelem, bkc_idx;
-      int node_idx = nodes->elems[i];
-      unsigned int context;
-      const re_token_t *node = dfa->nodes + node_idx;
-      re_node_set *new_dest_nodes;
-
-      /* Check whether `node' is a backreference or not.  */
-      if (node->type != OP_BACK_REF)
-	continue;
-
-      if (node->constraint)
-	{
-	  context = re_string_context_at (&mctx->input, cur_str_idx,
-					  mctx->eflags);
-	  if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context))
-	    continue;
-	}
-
-      /* `node' is a backreference.
-	 Check the substring which the substring matched.  */
-      bkc_idx = mctx->nbkref_ents;
-      err = get_subexp (mctx, node_idx, cur_str_idx);
-      if (BE (err != REG_NOERROR, 0))
-	goto free_return;
-
-      /* And add the epsilon closures (which is `new_dest_nodes') of
-	 the backreference to appropriate state_log.  */
-#ifdef DEBUG
-      assert (dfa->nexts[node_idx] != -1);
-#endif
-      for (; bkc_idx < mctx->nbkref_ents; ++bkc_idx)
-	{
-	  int subexp_len;
-	  re_dfastate_t *dest_state;
-	  struct re_backref_cache_entry *bkref_ent;
-	  bkref_ent = mctx->bkref_ents + bkc_idx;
-	  if (bkref_ent->node != node_idx || bkref_ent->str_idx != cur_str_idx)
-	    continue;
-	  subexp_len = bkref_ent->subexp_to - bkref_ent->subexp_from;
-	  new_dest_nodes = (subexp_len == 0
-			    ? dfa->eclosures + dfa->edests[node_idx].elems[0]
-			    : dfa->eclosures + dfa->nexts[node_idx]);
-	  dest_str_idx = (cur_str_idx + bkref_ent->subexp_to
-			  - bkref_ent->subexp_from);
-	  context = re_string_context_at (&mctx->input, dest_str_idx - 1,
-					  mctx->eflags);
-	  dest_state = mctx->state_log[dest_str_idx];
-	  prev_nelem = ((mctx->state_log[cur_str_idx] == NULL) ? 0
-			: mctx->state_log[cur_str_idx]->nodes.nelem);
-	  /* Add `new_dest_node' to state_log.  */
-	  if (dest_state == NULL)
-	    {
-	      mctx->state_log[dest_str_idx]
-		= re_acquire_state_context (&err, dfa, new_dest_nodes,
-					    context);
-	      if (BE (mctx->state_log[dest_str_idx] == NULL
-		      && err != REG_NOERROR, 0))
-		goto free_return;
-	    }
-	  else
-	    {
-	      re_node_set dest_nodes;
-	      err = re_node_set_init_union (&dest_nodes,
-					    dest_state->entrance_nodes,
-					    new_dest_nodes);
-	      if (BE (err != REG_NOERROR, 0))
-		{
-		  re_node_set_free (&dest_nodes);
-		  goto free_return;
-		}
-	      mctx->state_log[dest_str_idx]
-		= re_acquire_state_context (&err, dfa, &dest_nodes, context);
-	      re_node_set_free (&dest_nodes);
-	      if (BE (mctx->state_log[dest_str_idx] == NULL
-		      && err != REG_NOERROR, 0))
-		goto free_return;
-	    }
-	  /* We need to check recursively if the backreference can epsilon
-	     transit.  */
-	  if (subexp_len == 0
-	      && mctx->state_log[cur_str_idx]->nodes.nelem > prev_nelem)
-	    {
-	      err = check_subexp_matching_top (mctx, new_dest_nodes,
-					       cur_str_idx);
-	      if (BE (err != REG_NOERROR, 0))
-		goto free_return;
-	      err = transit_state_bkref (mctx, new_dest_nodes);
-	      if (BE (err != REG_NOERROR, 0))
-		goto free_return;
-	    }
-	}
-    }
-  err = REG_NOERROR;
- free_return:
-  return err;
-}
-
-/* Enumerate all the candidates which the backreference BKREF_NODE can match
-   at BKREF_STR_IDX, and register them by match_ctx_add_entry().
-   Note that we might collect inappropriate candidates here.
-   However, the cost of checking them strictly here is too high, then we
-   delay these checking for prune_impossible_nodes().  */
-
-static reg_errcode_t
-internal_function
-get_subexp (re_match_context_t *mctx, int bkref_node, int bkref_str_idx)
-{
-  const re_dfa_t *const dfa = mctx->dfa;
-  int subexp_num, sub_top_idx;
-  const char *buf = (const char *) re_string_get_buffer (&mctx->input);
-  /* Return if we have already checked BKREF_NODE at BKREF_STR_IDX.  */
-  int cache_idx = search_cur_bkref_entry (mctx, bkref_str_idx);
-  if (cache_idx != -1)
-    {
-      const struct re_backref_cache_entry *entry
-	= mctx->bkref_ents + cache_idx;
-      do
-        if (entry->node == bkref_node)
-	  return REG_NOERROR; /* We already checked it.  */
-      while (entry++->more);
-    }
-
-  subexp_num = dfa->nodes[bkref_node].opr.idx;
-
-  /* For each sub expression  */
-  for (sub_top_idx = 0; sub_top_idx < mctx->nsub_tops; ++sub_top_idx)
-    {
-      reg_errcode_t err;
-      re_sub_match_top_t *sub_top = mctx->sub_tops[sub_top_idx];
-      re_sub_match_last_t *sub_last;
-      int sub_last_idx, sl_str, bkref_str_off;
-
-      if (dfa->nodes[sub_top->node].opr.idx != subexp_num)
-	continue; /* It isn't related.  */
-
-      sl_str = sub_top->str_idx;
-      bkref_str_off = bkref_str_idx;
-      /* At first, check the last node of sub expressions we already
-	 evaluated.  */
-      for (sub_last_idx = 0; sub_last_idx < sub_top->nlasts; ++sub_last_idx)
-	{
-	  int sl_str_diff;
-	  sub_last = sub_top->lasts[sub_last_idx];
-	  sl_str_diff = sub_last->str_idx - sl_str;
-	  /* The matched string by the sub expression match with the substring
-	     at the back reference?  */
-	  if (sl_str_diff > 0)
-	    {
-	      if (BE (bkref_str_off + sl_str_diff > mctx->input.valid_len, 0))
-		{
-		  /* Not enough chars for a successful match.  */
-		  if (bkref_str_off + sl_str_diff > mctx->input.len)
-		    break;
-
-		  err = clean_state_log_if_needed (mctx,
-						   bkref_str_off
-						   + sl_str_diff);
-		  if (BE (err != REG_NOERROR, 0))
-		    return err;
-		  buf = (const char *) re_string_get_buffer (&mctx->input);
-		}
-	      if (memcmp (buf + bkref_str_off, buf + sl_str, sl_str_diff) != 0)
-		/* We don't need to search this sub expression any more.  */
-		break;
-	    }
-	  bkref_str_off += sl_str_diff;
-	  sl_str += sl_str_diff;
-	  err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node,
-				bkref_str_idx);
-
-	  /* Reload buf, since the preceding call might have reallocated
-	     the buffer.  */
-	  buf = (const char *) re_string_get_buffer (&mctx->input);
-
-	  if (err == REG_NOMATCH)
-	    continue;
-	  if (BE (err != REG_NOERROR, 0))
-	    return err;
-	}
-
-      if (sub_last_idx < sub_top->nlasts)
-	continue;
-      if (sub_last_idx > 0)
-	++sl_str;
-      /* Then, search for the other last nodes of the sub expression.  */
-      for (; sl_str <= bkref_str_idx; ++sl_str)
-	{
-	  int cls_node, sl_str_off;
-	  const re_node_set *nodes;
-	  sl_str_off = sl_str - sub_top->str_idx;
-	  /* The matched string by the sub expression match with the substring
-	     at the back reference?  */
-	  if (sl_str_off > 0)
-	    {
-	      if (BE (bkref_str_off >= mctx->input.valid_len, 0))
-		{
-		  /* If we are at the end of the input, we cannot match.  */
-		  if (bkref_str_off >= mctx->input.len)
-		    break;
-
-		  err = extend_buffers (mctx);
-		  if (BE (err != REG_NOERROR, 0))
-		    return err;
-
-		  buf = (const char *) re_string_get_buffer (&mctx->input);
-		}
-	      if (buf [bkref_str_off++] != buf[sl_str - 1])
-		break; /* We don't need to search this sub expression
-			  any more.  */
-	    }
-	  if (mctx->state_log[sl_str] == NULL)
-	    continue;
-	  /* Does this state have a ')' of the sub expression?  */
-	  nodes = &mctx->state_log[sl_str]->nodes;
-	  cls_node = find_subexp_node (dfa, nodes, subexp_num,
-				       OP_CLOSE_SUBEXP);
-	  if (cls_node == -1)
-	    continue; /* No.  */
-	  if (sub_top->path == NULL)
-	    {
-	      sub_top->path = calloc (sizeof (state_array_t),
-				      sl_str - sub_top->str_idx + 1);
-	      if (sub_top->path == NULL)
-		return REG_ESPACE;
-	    }
-	  /* Can the OP_OPEN_SUBEXP node arrive the OP_CLOSE_SUBEXP node
-	     in the current context?  */
-	  err = check_arrival (mctx, sub_top->path, sub_top->node,
-			       sub_top->str_idx, cls_node, sl_str,
-			       OP_CLOSE_SUBEXP);
-	  if (err == REG_NOMATCH)
-	      continue;
-	  if (BE (err != REG_NOERROR, 0))
-	      return err;
-	  sub_last = match_ctx_add_sublast (sub_top, cls_node, sl_str);
-	  if (BE (sub_last == NULL, 0))
-	    return REG_ESPACE;
-	  err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node,
-				bkref_str_idx);
-	  if (err == REG_NOMATCH)
-	    continue;
-	}
-    }
-  return REG_NOERROR;
-}
-
-/* Helper functions for get_subexp().  */
-
-/* Check SUB_LAST can arrive to the back reference BKREF_NODE at BKREF_STR.
-   If it can arrive, register the sub expression expressed with SUB_TOP
-   and SUB_LAST.  */
-
-static reg_errcode_t
-internal_function
-get_subexp_sub (re_match_context_t *mctx, const re_sub_match_top_t *sub_top,
-		re_sub_match_last_t *sub_last, int bkref_node, int bkref_str)
-{
-  reg_errcode_t err;
-  int to_idx;
-  /* Can the subexpression arrive the back reference?  */
-  err = check_arrival (mctx, &sub_last->path, sub_last->node,
-		       sub_last->str_idx, bkref_node, bkref_str,
-		       OP_OPEN_SUBEXP);
-  if (err != REG_NOERROR)
-    return err;
-  err = match_ctx_add_entry (mctx, bkref_node, bkref_str, sub_top->str_idx,
-			     sub_last->str_idx);
-  if (BE (err != REG_NOERROR, 0))
-    return err;
-  to_idx = bkref_str + sub_last->str_idx - sub_top->str_idx;
-  return clean_state_log_if_needed (mctx, to_idx);
-}
-
-/* Find the first node which is '(' or ')' and whose index is SUBEXP_IDX.
-   Search '(' if FL_OPEN, or search ')' otherwise.
-   TODO: This function isn't efficient...
-	 Because there might be more than one nodes whose types are
-	 OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all
-	 nodes.
-	 E.g. RE: (a){2}  */
-
-static int
-internal_function
-find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes,
-		  int subexp_idx, int type)
-{
-  int cls_idx;
-  for (cls_idx = 0; cls_idx < nodes->nelem; ++cls_idx)
-    {
-      int cls_node = nodes->elems[cls_idx];
-      const re_token_t *node = dfa->nodes + cls_node;
-      if (node->type == type
-	  && node->opr.idx == subexp_idx)
-	return cls_node;
-    }
-  return -1;
-}
-
-/* Check whether the node TOP_NODE at TOP_STR can arrive to the node
-   LAST_NODE at LAST_STR.  We record the path onto PATH since it will be
-   heavily reused.
-   Return REG_NOERROR if it can arrive, or REG_NOMATCH otherwise.  */
-
-static reg_errcode_t
-internal_function
-check_arrival (re_match_context_t *mctx, state_array_t *path, int top_node,
-	       int top_str, int last_node, int last_str, int type)
-{
-  const re_dfa_t *const dfa = mctx->dfa;
-  reg_errcode_t err = REG_NOERROR;
-  int subexp_num, backup_cur_idx, str_idx, null_cnt;
-  re_dfastate_t *cur_state = NULL;
-  re_node_set *cur_nodes, next_nodes;
-  re_dfastate_t **backup_state_log;
-  unsigned int context;
-
-  subexp_num = dfa->nodes[top_node].opr.idx;
-  /* Extend the buffer if we need.  */
-  if (BE (path->alloc < last_str + mctx->max_mb_elem_len + 1, 0))
-    {
-      re_dfastate_t **new_array;
-      int old_alloc = path->alloc;
-      path->alloc += last_str + mctx->max_mb_elem_len + 1;
-      new_array = re_realloc (path->array, re_dfastate_t *, path->alloc);
-      if (BE (new_array == NULL, 0))
-	{
-	  path->alloc = old_alloc;
-	  return REG_ESPACE;
-	}
-      path->array = new_array;
-      memset (new_array + old_alloc, '\0',
-	      sizeof (re_dfastate_t *) * (path->alloc - old_alloc));
-    }
-
-  str_idx = path->next_idx ?: top_str;
-
-  /* Temporary modify MCTX.  */
-  backup_state_log = mctx->state_log;
-  backup_cur_idx = mctx->input.cur_idx;
-  mctx->state_log = path->array;
-  mctx->input.cur_idx = str_idx;
-
-  /* Setup initial node set.  */
-  context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags);
-  if (str_idx == top_str)
-    {
-      err = re_node_set_init_1 (&next_nodes, top_node);
-      if (BE (err != REG_NOERROR, 0))
-	return err;
-      err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type);
-      if (BE (err != REG_NOERROR, 0))
-	{
-	  re_node_set_free (&next_nodes);
-	  return err;
-	}
-    }
-  else
-    {
-      cur_state = mctx->state_log[str_idx];
-      if (cur_state && cur_state->has_backref)
-	{
-	  err = re_node_set_init_copy (&next_nodes, &cur_state->nodes);
-	  if (BE (err != REG_NOERROR, 0))
-	    return err;
-	}
-      else
-	re_node_set_init_empty (&next_nodes);
-    }
-  if (str_idx == top_str || (cur_state && cur_state->has_backref))
-    {
-      if (next_nodes.nelem)
-	{
-	  err = expand_bkref_cache (mctx, &next_nodes, str_idx,
-				    subexp_num, type);
-	  if (BE (err != REG_NOERROR, 0))
-	    {
-	      re_node_set_free (&next_nodes);
-	      return err;
-	    }
-	}
-      cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context);
-      if (BE (cur_state == NULL && err != REG_NOERROR, 0))
-	{
-	  re_node_set_free (&next_nodes);
-	  return err;
-	}
-      mctx->state_log[str_idx] = cur_state;
-    }
-
-  for (null_cnt = 0; str_idx < last_str && null_cnt <= mctx->max_mb_elem_len;)
-    {
-      re_node_set_empty (&next_nodes);
-      if (mctx->state_log[str_idx + 1])
-	{
-	  err = re_node_set_merge (&next_nodes,
-				   &mctx->state_log[str_idx + 1]->nodes);
-	  if (BE (err != REG_NOERROR, 0))
-	    {
-	      re_node_set_free (&next_nodes);
-	      return err;
-	    }
-	}
-      if (cur_state)
-	{
-	  err = check_arrival_add_next_nodes (mctx, str_idx,
-					      &cur_state->non_eps_nodes,
-					      &next_nodes);
-	  if (BE (err != REG_NOERROR, 0))
-	    {
-	      re_node_set_free (&next_nodes);
-	      return err;
-	    }
-	}
-      ++str_idx;
-      if (next_nodes.nelem)
-	{
-	  err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type);
-	  if (BE (err != REG_NOERROR, 0))
-	    {
-	      re_node_set_free (&next_nodes);
-	      return err;
-	    }
-	  err = expand_bkref_cache (mctx, &next_nodes, str_idx,
-				    subexp_num, type);
-	  if (BE (err != REG_NOERROR, 0))
-	    {
-	      re_node_set_free (&next_nodes);
-	      return err;
-	    }
-	}
-      context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags);
-      cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context);
-      if (BE (cur_state == NULL && err != REG_NOERROR, 0))
-	{
-	  re_node_set_free (&next_nodes);
-	  return err;
-	}
-      mctx->state_log[str_idx] = cur_state;
-      null_cnt = cur_state == NULL ? null_cnt + 1 : 0;
-    }
-  re_node_set_free (&next_nodes);
-  cur_nodes = (mctx->state_log[last_str] == NULL ? NULL
-	       : &mctx->state_log[last_str]->nodes);
-  path->next_idx = str_idx;
-
-  /* Fix MCTX.  */
-  mctx->state_log = backup_state_log;
-  mctx->input.cur_idx = backup_cur_idx;
-
-  /* Then check the current node set has the node LAST_NODE.  */
-  if (cur_nodes != NULL && re_node_set_contains (cur_nodes, last_node))
-    return REG_NOERROR;
-
-  return REG_NOMATCH;
-}
-
-/* Helper functions for check_arrival.  */
-
-/* Calculate the destination nodes of CUR_NODES at STR_IDX, and append them
-   to NEXT_NODES.
-   TODO: This function is similar to the functions transit_state*(),
-	 however this function has many additional works.
-	 Can't we unify them?  */
-
-static reg_errcode_t
-internal_function
-check_arrival_add_next_nodes (re_match_context_t *mctx, int str_idx,
-			      re_node_set *cur_nodes, re_node_set *next_nodes)
-{
-  const re_dfa_t *const dfa = mctx->dfa;
-  int result;
-  int cur_idx;
-  reg_errcode_t err = REG_NOERROR;
-  re_node_set union_set;
-  re_node_set_init_empty (&union_set);
-  for (cur_idx = 0; cur_idx < cur_nodes->nelem; ++cur_idx)
-    {
-      int naccepted = 0;
-      int cur_node = cur_nodes->elems[cur_idx];
-#ifdef DEBUG
-      re_token_type_t type = dfa->nodes[cur_node].type;
-      assert (!IS_EPSILON_NODE (type));
-#endif
-#ifdef RE_ENABLE_I18N
-      /* If the node may accept `multi byte'.  */
-      if (dfa->nodes[cur_node].accept_mb)
-	{
-	  naccepted = check_node_accept_bytes (dfa, cur_node, &mctx->input,
-					       str_idx);
-	  if (naccepted > 1)
-	    {
-	      re_dfastate_t *dest_state;
-	      int next_node = dfa->nexts[cur_node];
-	      int next_idx = str_idx + naccepted;
-	      dest_state = mctx->state_log[next_idx];
-	      re_node_set_empty (&union_set);
-	      if (dest_state)
-		{
-		  err = re_node_set_merge (&union_set, &dest_state->nodes);
-		  if (BE (err != REG_NOERROR, 0))
-		    {
-		      re_node_set_free (&union_set);
-		      return err;
-		    }
-		}
-	      result = re_node_set_insert (&union_set, next_node);
-	      if (BE (result < 0, 0))
-		{
-		  re_node_set_free (&union_set);
-		  return REG_ESPACE;
-		}
-	      mctx->state_log[next_idx] = re_acquire_state (&err, dfa,
-							    &union_set);
-	      if (BE (mctx->state_log[next_idx] == NULL
-		      && err != REG_NOERROR, 0))
-		{
-		  re_node_set_free (&union_set);
-		  return err;
-		}
-	    }
-	}
-#endif /* RE_ENABLE_I18N */
-      if (naccepted
-	  || check_node_accept (mctx, dfa->nodes + cur_node, str_idx))
-	{
-	  result = re_node_set_insert (next_nodes, dfa->nexts[cur_node]);
-	  if (BE (result < 0, 0))
-	    {
-	      re_node_set_free (&union_set);
-	      return REG_ESPACE;
-	    }
-	}
-    }
-  re_node_set_free (&union_set);
-  return REG_NOERROR;
-}
-
-/* For all the nodes in CUR_NODES, add the epsilon closures of them to
-   CUR_NODES, however exclude the nodes which are:
-    - inside the sub expression whose number is EX_SUBEXP, if FL_OPEN.
-    - out of the sub expression whose number is EX_SUBEXP, if !FL_OPEN.
-*/
-
-static reg_errcode_t
-internal_function
-check_arrival_expand_ecl (const re_dfa_t *dfa, re_node_set *cur_nodes,
-			  int ex_subexp, int type)
-{
-  reg_errcode_t err;
-  int idx, outside_node;
-  re_node_set new_nodes;
-#ifdef DEBUG
-  assert (cur_nodes->nelem);
-#endif
-  err = re_node_set_alloc (&new_nodes, cur_nodes->nelem);
-  if (BE (err != REG_NOERROR, 0))
-    return err;
-  /* Create a new node set NEW_NODES with the nodes which are epsilon
-     closures of the node in CUR_NODES.  */
-
-  for (idx = 0; idx < cur_nodes->nelem; ++idx)
-    {
-      int cur_node = cur_nodes->elems[idx];
-      const re_node_set *eclosure = dfa->eclosures + cur_node;
-      outside_node = find_subexp_node (dfa, eclosure, ex_subexp, type);
-      if (outside_node == -1)
-	{
-	  /* There are no problematic nodes, just merge them.  */
-	  err = re_node_set_merge (&new_nodes, eclosure);
-	  if (BE (err != REG_NOERROR, 0))
-	    {
-	      re_node_set_free (&new_nodes);
-	      return err;
-	    }
-	}
-      else
-	{
-	  /* There are problematic nodes, re-calculate incrementally.  */
-	  err = check_arrival_expand_ecl_sub (dfa, &new_nodes, cur_node,
-					      ex_subexp, type);
-	  if (BE (err != REG_NOERROR, 0))
-	    {
-	      re_node_set_free (&new_nodes);
-	      return err;
-	    }
-	}
-    }
-  re_node_set_free (cur_nodes);
-  *cur_nodes = new_nodes;
-  return REG_NOERROR;
-}
-
-/* Helper function for check_arrival_expand_ecl.
-   Check incrementally the epsilon closure of TARGET, and if it isn't
-   problematic append it to DST_NODES.  */
-
-static reg_errcode_t
-internal_function
-check_arrival_expand_ecl_sub (const re_dfa_t *dfa, re_node_set *dst_nodes,
-			      int target, int ex_subexp, int type)
-{
-  int cur_node;
-  for (cur_node = target; !re_node_set_contains (dst_nodes, cur_node);)
-    {
-      int err;
-
-      if (dfa->nodes[cur_node].type == type
-	  && dfa->nodes[cur_node].opr.idx == ex_subexp)
-	{
-	  if (type == OP_CLOSE_SUBEXP)
-	    {
-	      err = re_node_set_insert (dst_nodes, cur_node);
-	      if (BE (err == -1, 0))
-		return REG_ESPACE;
-	    }
-	  break;
-	}
-      err = re_node_set_insert (dst_nodes, cur_node);
-      if (BE (err == -1, 0))
-	return REG_ESPACE;
-      if (dfa->edests[cur_node].nelem == 0)
-	break;
-      if (dfa->edests[cur_node].nelem == 2)
-	{
-	  err = check_arrival_expand_ecl_sub (dfa, dst_nodes,
-					      dfa->edests[cur_node].elems[1],
-					      ex_subexp, type);
-	  if (BE (err != REG_NOERROR, 0))
-	    return err;
-	}
-      cur_node = dfa->edests[cur_node].elems[0];
-    }
-  return REG_NOERROR;
-}
-
-
-/* For all the back references in the current state, calculate the
-   destination of the back references by the appropriate entry
-   in MCTX->BKREF_ENTS.  */
-
-static reg_errcode_t
-internal_function
-expand_bkref_cache (re_match_context_t *mctx, re_node_set *cur_nodes,
-		    int cur_str, int subexp_num, int type)
-{
-  const re_dfa_t *const dfa = mctx->dfa;
-  reg_errcode_t err;
-  int cache_idx_start = search_cur_bkref_entry (mctx, cur_str);
-  struct re_backref_cache_entry *ent;
-
-  if (cache_idx_start == -1)
-    return REG_NOERROR;
-
- restart:
-  ent = mctx->bkref_ents + cache_idx_start;
-  do
-    {
-      int to_idx, next_node;
-
-      /* Is this entry ENT is appropriate?  */
-      if (!re_node_set_contains (cur_nodes, ent->node))
-	continue; /* No.  */
-
-      to_idx = cur_str + ent->subexp_to - ent->subexp_from;
-      /* Calculate the destination of the back reference, and append it
-	 to MCTX->STATE_LOG.  */
-      if (to_idx == cur_str)
-	{
-	  /* The backreference did epsilon transit, we must re-check all the
-	     node in the current state.  */
-	  re_node_set new_dests;
-	  reg_errcode_t err2, err3;
-	  next_node = dfa->edests[ent->node].elems[0];
-	  if (re_node_set_contains (cur_nodes, next_node))
-	    continue;
-	  err = re_node_set_init_1 (&new_dests, next_node);
-	  err2 = check_arrival_expand_ecl (dfa, &new_dests, subexp_num, type);
-	  err3 = re_node_set_merge (cur_nodes, &new_dests);
-	  re_node_set_free (&new_dests);
-	  if (BE (err != REG_NOERROR || err2 != REG_NOERROR
-		  || err3 != REG_NOERROR, 0))
-	    {
-	      err = (err != REG_NOERROR ? err
-		     : (err2 != REG_NOERROR ? err2 : err3));
-	      return err;
-	    }
-	  /* TODO: It is still inefficient...  */
-	  goto restart;
-	}
-      else
-	{
-	  re_node_set union_set;
-	  next_node = dfa->nexts[ent->node];
-	  if (mctx->state_log[to_idx])
-	    {
-	      int ret;
-	      if (re_node_set_contains (&mctx->state_log[to_idx]->nodes,
-					next_node))
-		continue;
-	      err = re_node_set_init_copy (&union_set,
-					   &mctx->state_log[to_idx]->nodes);
-	      ret = re_node_set_insert (&union_set, next_node);
-	      if (BE (err != REG_NOERROR || ret < 0, 0))
-		{
-		  re_node_set_free (&union_set);
-		  err = err != REG_NOERROR ? err : REG_ESPACE;
-		  return err;
-		}
-	    }
-	  else
-	    {
-	      err = re_node_set_init_1 (&union_set, next_node);
-	      if (BE (err != REG_NOERROR, 0))
-		return err;
-	    }
-	  mctx->state_log[to_idx] = re_acquire_state (&err, dfa, &union_set);
-	  re_node_set_free (&union_set);
-	  if (BE (mctx->state_log[to_idx] == NULL
-		  && err != REG_NOERROR, 0))
-	    return err;
-	}
-    }
-  while (ent++->more);
-  return REG_NOERROR;
-}
-
-/* Build transition table for the state.
-   Return 1 if succeeded, otherwise return NULL.  */
-
-static int
-internal_function
-build_trtable (const re_dfa_t *dfa, re_dfastate_t *state)
-{
-  reg_errcode_t err;
-  int i, j, ch, need_word_trtable = 0;
-  bitset_word_t elem, mask;
-  bool dests_node_malloced = false;
-  bool dest_states_malloced = false;
-  int ndests; /* Number of the destination states from `state'.  */
-  re_dfastate_t **trtable;
-  re_dfastate_t **dest_states = NULL, **dest_states_word, **dest_states_nl;
-  re_node_set follows, *dests_node;
-  bitset_t *dests_ch;
-  bitset_t acceptable;
-
-  struct dests_alloc
-  {
-    re_node_set dests_node[SBC_MAX];
-    bitset_t dests_ch[SBC_MAX];
-  } *dests_alloc;
-
-  /* We build DFA states which corresponds to the destination nodes
-     from `state'.  `dests_node[i]' represents the nodes which i-th
-     destination state contains, and `dests_ch[i]' represents the
-     characters which i-th destination state accepts.  */
-  if (__libc_use_alloca (sizeof (struct dests_alloc)))
-    dests_alloc = (struct dests_alloc *) alloca (sizeof (struct dests_alloc));
-  else
-    {
-      dests_alloc = re_malloc (struct dests_alloc, 1);
-      if (BE (dests_alloc == NULL, 0))
-	return 0;
-      dests_node_malloced = true;
-    }
-  dests_node = dests_alloc->dests_node;
-  dests_ch = dests_alloc->dests_ch;
-
-  /* Initialize transiton table.  */
-  state->word_trtable = state->trtable = NULL;
-
-  /* At first, group all nodes belonging to `state' into several
-     destinations.  */
-  ndests = group_nodes_into_DFAstates (dfa, state, dests_node, dests_ch);
-  if (BE (ndests <= 0, 0))
-    {
-      if (dests_node_malloced)
-	free (dests_alloc);
-      /* Return 0 in case of an error, 1 otherwise.  */
-      if (ndests == 0)
-	{
-	  state->trtable = (re_dfastate_t **)
-	    calloc (sizeof (re_dfastate_t *), SBC_MAX);
-	  return 1;
-	}
-      return 0;
-    }
-
-  err = re_node_set_alloc (&follows, ndests + 1);
-  if (BE (err != REG_NOERROR, 0))
-    goto out_free;
-
-  if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX
-			 + ndests * 3 * sizeof (re_dfastate_t *)))
-    dest_states = (re_dfastate_t **)
-      alloca (ndests * 3 * sizeof (re_dfastate_t *));
-  else
-    {
-      dest_states = (re_dfastate_t **)
-	malloc (ndests * 3 * sizeof (re_dfastate_t *));
-      if (BE (dest_states == NULL, 0))
-	{
-out_free:
-	  if (dest_states_malloced)
-	    free (dest_states);
-	  re_node_set_free (&follows);
-	  for (i = 0; i < ndests; ++i)
-	    re_node_set_free (dests_node + i);
-	  if (dests_node_malloced)
-	    free (dests_alloc);
-	  return 0;
-	}
-      dest_states_malloced = true;
-    }
-  dest_states_word = dest_states + ndests;
-  dest_states_nl = dest_states_word + ndests;
-  bitset_empty (acceptable);
-
-  /* Then build the states for all destinations.  */
-  for (i = 0; i < ndests; ++i)
-    {
-      int next_node;
-      re_node_set_empty (&follows);
-      /* Merge the follows of this destination states.  */
-      for (j = 0; j < dests_node[i].nelem; ++j)
-	{
-	  next_node = dfa->nexts[dests_node[i].elems[j]];
-	  if (next_node != -1)
-	    {
-	      err = re_node_set_merge (&follows, dfa->eclosures + next_node);
-	      if (BE (err != REG_NOERROR, 0))
-		goto out_free;
-	    }
-	}
-      dest_states[i] = re_acquire_state_context (&err, dfa, &follows, 0);
-      if (BE (dest_states[i] == NULL && err != REG_NOERROR, 0))
-	goto out_free;
-      /* If the new state has context constraint,
-	 build appropriate states for these contexts.  */
-      if (dest_states[i]->has_constraint)
-	{
-	  dest_states_word[i] = re_acquire_state_context (&err, dfa, &follows,
-							  CONTEXT_WORD);
-	  if (BE (dest_states_word[i] == NULL && err != REG_NOERROR, 0))
-	    goto out_free;
-
-	  if (dest_states[i] != dest_states_word[i] && dfa->mb_cur_max > 1)
-	    need_word_trtable = 1;
-
-	  dest_states_nl[i] = re_acquire_state_context (&err, dfa, &follows,
-							CONTEXT_NEWLINE);
-	  if (BE (dest_states_nl[i] == NULL && err != REG_NOERROR, 0))
-	    goto out_free;
- 	}
-      else
-	{
-	  dest_states_word[i] = dest_states[i];
-	  dest_states_nl[i] = dest_states[i];
-	}
-      bitset_merge (acceptable, dests_ch[i]);
-    }
-
-  if (!BE (need_word_trtable, 0))
-    {
-      /* We don't care about whether the following character is a word
-	 character, or we are in a single-byte character set so we can
-	 discern by looking at the character code: allocate a
-	 256-entry transition table.  */
-      trtable = state->trtable =
-	(re_dfastate_t **) calloc (sizeof (re_dfastate_t *), SBC_MAX);
-      if (BE (trtable == NULL, 0))
-	goto out_free;
-
-      /* For all characters ch...:  */
-      for (i = 0; i < BITSET_WORDS; ++i)
-	for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1;
-	     elem;
-	     mask <<= 1, elem >>= 1, ++ch)
-	  if (BE (elem & 1, 0))
-	    {
-	      /* There must be exactly one destination which accepts
-		 character ch.  See group_nodes_into_DFAstates.  */
-	      for (j = 0; (dests_ch[j][i] & mask) == 0; ++j)
-		;
-
-	      /* j-th destination accepts the word character ch.  */
-	      if (dfa->word_char[i] & mask)
-		trtable[ch] = dest_states_word[j];
-	      else
-		trtable[ch] = dest_states[j];
-	    }
-    }
-  else
-    {
-      /* We care about whether the following character is a word
-	 character, and we are in a multi-byte character set: discern
-	 by looking at the character code: build two 256-entry
-	 transition tables, one starting at trtable[0] and one
-	 starting at trtable[SBC_MAX].  */
-      trtable = state->word_trtable =
-	(re_dfastate_t **) calloc (sizeof (re_dfastate_t *), 2 * SBC_MAX);
-      if (BE (trtable == NULL, 0))
-	goto out_free;
-
-      /* For all characters ch...:  */
-      for (i = 0; i < BITSET_WORDS; ++i)
-	for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1;
-	     elem;
-	     mask <<= 1, elem >>= 1, ++ch)
-	  if (BE (elem & 1, 0))
-	    {
-	      /* There must be exactly one destination which accepts
-		 character ch.  See group_nodes_into_DFAstates.  */
-	      for (j = 0; (dests_ch[j][i] & mask) == 0; ++j)
-		;
-
-	      /* j-th destination accepts the word character ch.  */
-	      trtable[ch] = dest_states[j];
-	      trtable[ch + SBC_MAX] = dest_states_word[j];
-	    }
-    }
-
-  /* new line */
-  if (bitset_contain (acceptable, NEWLINE_CHAR))
-    {
-      /* The current state accepts newline character.  */
-      for (j = 0; j < ndests; ++j)
-	if (bitset_contain (dests_ch[j], NEWLINE_CHAR))
-	  {
-	    /* k-th destination accepts newline character.  */
-	    trtable[NEWLINE_CHAR] = dest_states_nl[j];
-	    if (need_word_trtable)
-	      trtable[NEWLINE_CHAR + SBC_MAX] = dest_states_nl[j];
-	    /* There must be only one destination which accepts
-	       newline.  See group_nodes_into_DFAstates.  */
-	    break;
-	  }
-    }
-
-  if (dest_states_malloced)
-    free (dest_states);
-
-  re_node_set_free (&follows);
-  for (i = 0; i < ndests; ++i)
-    re_node_set_free (dests_node + i);
-
-  if (dests_node_malloced)
-    free (dests_alloc);
-
-  return 1;
-}
-
-/* Group all nodes belonging to STATE into several destinations.
-   Then for all destinations, set the nodes belonging to the destination
-   to DESTS_NODE[i] and set the characters accepted by the destination
-   to DEST_CH[i].  This function return the number of destinations.  */
-
-static int
-internal_function
-group_nodes_into_DFAstates (const re_dfa_t *dfa, const re_dfastate_t *state,
-			    re_node_set *dests_node, bitset_t *dests_ch)
-{
-  reg_errcode_t err;
-  int result;
-  int i, j, k;
-  int ndests; /* Number of the destinations from `state'.  */
-  bitset_t accepts; /* Characters a node can accept.  */
-  const re_node_set *cur_nodes = &state->nodes;
-  bitset_empty (accepts);
-  ndests = 0;
-
-  /* For all the nodes belonging to `state',  */
-  for (i = 0; i < cur_nodes->nelem; ++i)
-    {
-      re_token_t *node = &dfa->nodes[cur_nodes->elems[i]];
-      re_token_type_t type = node->type;
-      unsigned int constraint = node->constraint;
-
-      /* Enumerate all single byte character this node can accept.  */
-      if (type == CHARACTER)
-	bitset_set (accepts, node->opr.c);
-      else if (type == SIMPLE_BRACKET)
-	{
-	  bitset_merge (accepts, node->opr.sbcset);
-	}
-      else if (type == OP_PERIOD)
-	{
-#ifdef RE_ENABLE_I18N
-	  if (dfa->mb_cur_max > 1)
-	    bitset_merge (accepts, dfa->sb_char);
-	  else
-#endif
-	    bitset_set_all (accepts);
-	  if (!(dfa->syntax & RE_DOT_NEWLINE))
-	    bitset_clear (accepts, '\n');
-	  if (dfa->syntax & RE_DOT_NOT_NULL)
-	    bitset_clear (accepts, '\0');
-	}
-#ifdef RE_ENABLE_I18N
-      else if (type == OP_UTF8_PERIOD)
-        {
-	  memset (accepts, '\xff', sizeof (bitset_t) / 2);
-	  if (!(dfa->syntax & RE_DOT_NEWLINE))
-	    bitset_clear (accepts, '\n');
-	  if (dfa->syntax & RE_DOT_NOT_NULL)
-	    bitset_clear (accepts, '\0');
-        }
-#endif
-      else
-	continue;
-
-      /* Check the `accepts' and sift the characters which are not
-	 match it the context.  */
-      if (constraint)
-	{
-	  if (constraint & NEXT_NEWLINE_CONSTRAINT)
-	    {
-	      bool accepts_newline = bitset_contain (accepts, NEWLINE_CHAR);
-	      bitset_empty (accepts);
-	      if (accepts_newline)
-		bitset_set (accepts, NEWLINE_CHAR);
-	      else
-		continue;
-	    }
-	  if (constraint & NEXT_ENDBUF_CONSTRAINT)
-	    {
-	      bitset_empty (accepts);
-	      continue;
-	    }
-
-	  if (constraint & NEXT_WORD_CONSTRAINT)
-	    {
-	      bitset_word_t any_set = 0;
-	      if (type == CHARACTER && !node->word_char)
-		{
-		  bitset_empty (accepts);
-		  continue;
-		}
-#ifdef RE_ENABLE_I18N
-	      if (dfa->mb_cur_max > 1)
-		for (j = 0; j < BITSET_WORDS; ++j)
-		  any_set |= (accepts[j] &= (dfa->word_char[j] | ~dfa->sb_char[j]));
-	      else
-#endif
-		for (j = 0; j < BITSET_WORDS; ++j)
-		  any_set |= (accepts[j] &= dfa->word_char[j]);
-	      if (!any_set)
-		continue;
-	    }
-	  if (constraint & NEXT_NOTWORD_CONSTRAINT)
-	    {
-	      bitset_word_t any_set = 0;
-	      if (type == CHARACTER && node->word_char)
-		{
-		  bitset_empty (accepts);
-		  continue;
-		}
-#ifdef RE_ENABLE_I18N
-	      if (dfa->mb_cur_max > 1)
-		for (j = 0; j < BITSET_WORDS; ++j)
-		  any_set |= (accepts[j] &= ~(dfa->word_char[j] & dfa->sb_char[j]));
-	      else
-#endif
-		for (j = 0; j < BITSET_WORDS; ++j)
-		  any_set |= (accepts[j] &= ~dfa->word_char[j]);
-	      if (!any_set)
-		continue;
-	    }
-	}
-
-      /* Then divide `accepts' into DFA states, or create a new
-	 state.  Above, we make sure that accepts is not empty.  */
-      for (j = 0; j < ndests; ++j)
-	{
-	  bitset_t intersec; /* Intersection sets, see below.  */
-	  bitset_t remains;
-	  /* Flags, see below.  */
-	  bitset_word_t has_intersec, not_subset, not_consumed;
-
-	  /* Optimization, skip if this state doesn't accept the character.  */
-	  if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c))
-	    continue;
-
-	  /* Enumerate the intersection set of this state and `accepts'.  */
-	  has_intersec = 0;
-	  for (k = 0; k < BITSET_WORDS; ++k)
-	    has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k];
-	  /* And skip if the intersection set is empty.  */
-	  if (!has_intersec)
-	    continue;
-
-	  /* Then check if this state is a subset of `accepts'.  */
-	  not_subset = not_consumed = 0;
-	  for (k = 0; k < BITSET_WORDS; ++k)
-	    {
-	      not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k];
-	      not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k];
-	    }
-
-	  /* If this state isn't a subset of `accepts', create a
-	     new group state, which has the `remains'. */
-	  if (not_subset)
-	    {
-	      bitset_copy (dests_ch[ndests], remains);
-	      bitset_copy (dests_ch[j], intersec);
-	      err = re_node_set_init_copy (dests_node + ndests, &dests_node[j]);
-	      if (BE (err != REG_NOERROR, 0))
-		goto error_return;
-	      ++ndests;
-	    }
-
-	  /* Put the position in the current group. */
-	  result = re_node_set_insert (&dests_node[j], cur_nodes->elems[i]);
-	  if (BE (result < 0, 0))
-	    goto error_return;
-
-	  /* If all characters are consumed, go to next node. */
-	  if (!not_consumed)
-	    break;
-	}
-      /* Some characters remain, create a new group. */
-      if (j == ndests)
-	{
-	  bitset_copy (dests_ch[ndests], accepts);
-	  err = re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]);
-	  if (BE (err != REG_NOERROR, 0))
-	    goto error_return;
-	  ++ndests;
-	  bitset_empty (accepts);
-	}
-    }
-  return ndests;
- error_return:
-  for (j = 0; j < ndests; ++j)
-    re_node_set_free (dests_node + j);
-  return -1;
-}
-
-#ifdef RE_ENABLE_I18N
-/* Check how many bytes the node `dfa->nodes[node_idx]' accepts.
-   Return the number of the bytes the node accepts.
-   STR_IDX is the current index of the input string.
-
-   This function handles the nodes which can accept one character, or
-   one collating element like '.', '[a-z]', opposite to the other nodes
-   can only accept one byte.  */
-
-static int
-internal_function
-check_node_accept_bytes (const re_dfa_t *dfa, int node_idx,
-			 const re_string_t *input, int str_idx)
-{
-  const re_token_t *node = dfa->nodes + node_idx;
-  int char_len, elem_len;
-  int i;
-
-  if (BE (node->type == OP_UTF8_PERIOD, 0))
-    {
-      unsigned char c = re_string_byte_at (input, str_idx), d;
-      if (BE (c < 0xc2, 1))
-	return 0;
-
-      if (str_idx + 2 > input->len)
-	return 0;
-
-      d = re_string_byte_at (input, str_idx + 1);
-      if (c < 0xe0)
-	return (d < 0x80 || d > 0xbf) ? 0 : 2;
-      else if (c < 0xf0)
-	{
-	  char_len = 3;
-	  if (c == 0xe0 && d < 0xa0)
-	    return 0;
-	}
-      else if (c < 0xf8)
-	{
-	  char_len = 4;
-	  if (c == 0xf0 && d < 0x90)
-	    return 0;
-	}
-      else if (c < 0xfc)
-	{
-	  char_len = 5;
-	  if (c == 0xf8 && d < 0x88)
-	    return 0;
-	}
-      else if (c < 0xfe)
-	{
-	  char_len = 6;
-	  if (c == 0xfc && d < 0x84)
-	    return 0;
-	}
-      else
-	return 0;
-
-      if (str_idx + char_len > input->len)
-	return 0;
-
-      for (i = 1; i < char_len; ++i)
-	{
-	  d = re_string_byte_at (input, str_idx + i);
-	  if (d < 0x80 || d > 0xbf)
-	    return 0;
-	}
-      return char_len;
-    }
-
-  char_len = re_string_char_size_at (input, str_idx);
-  if (node->type == OP_PERIOD)
-    {
-      if (char_len <= 1)
-        return 0;
-      /* FIXME: I don't think this if is needed, as both '\n'
-	 and '\0' are char_len == 1.  */
-      /* '.' accepts any one character except the following two cases.  */
-      if ((!(dfa->syntax & RE_DOT_NEWLINE) &&
-	   re_string_byte_at (input, str_idx) == '\n') ||
-	  ((dfa->syntax & RE_DOT_NOT_NULL) &&
-	   re_string_byte_at (input, str_idx) == '\0'))
-	return 0;
-      return char_len;
-    }
-
-  elem_len = re_string_elem_size_at (input, str_idx);
-  if ((elem_len <= 1 && char_len <= 1) || char_len == 0)
-    return 0;
-
-  if (node->type == COMPLEX_BRACKET)
-    {
-      const re_charset_t *cset = node->opr.mbcset;
-# ifdef _LIBC
-      const unsigned char *pin
-	= ((const unsigned char *) re_string_get_buffer (input) + str_idx);
-      int j;
-      uint32_t nrules;
-# endif /* _LIBC */
-      int match_len = 0;
-      wchar_t wc = ((cset->nranges || cset->nchar_classes || cset->nmbchars)
-		    ? re_string_wchar_at (input, str_idx) : 0);
-
-      /* match with multibyte character?  */
-      for (i = 0; i < cset->nmbchars; ++i)
-	if (wc == cset->mbchars[i])
-	  {
-	    match_len = char_len;
-	    goto check_node_accept_bytes_match;
-	  }
-      /* match with character_class?  */
-      for (i = 0; i < cset->nchar_classes; ++i)
-	{
-	  wctype_t wt = cset->char_classes[i];
-	  if (__iswctype (wc, wt))
-	    {
-	      match_len = char_len;
-	      goto check_node_accept_bytes_match;
-	    }
-	}
-
-# ifdef _LIBC
-      nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
-      if (nrules != 0)
-	{
-	  unsigned int in_collseq = 0;
-	  const int32_t *table, *indirect;
-	  const unsigned char *weights, *extra;
-	  const char *collseqwc;
-	  /* This #include defines a local function!  */
-#  include <locale/weight.h>
-
-	  /* match with collating_symbol?  */
-	  if (cset->ncoll_syms)
-	    extra = (const unsigned char *)
-	      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
-	  for (i = 0; i < cset->ncoll_syms; ++i)
-	    {
-	      const unsigned char *coll_sym = extra + cset->coll_syms[i];
-	      /* Compare the length of input collating element and
-		 the length of current collating element.  */
-	      if (*coll_sym != elem_len)
-		continue;
-	      /* Compare each bytes.  */
-	      for (j = 0; j < *coll_sym; j++)
-		if (pin[j] != coll_sym[1 + j])
-		  break;
-	      if (j == *coll_sym)
-		{
-		  /* Match if every bytes is equal.  */
-		  match_len = j;
-		  goto check_node_accept_bytes_match;
-		}
-	    }
-
-	  if (cset->nranges)
-	    {
-	      if (elem_len <= char_len)
-		{
-		  collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC);
-		  in_collseq = __collseq_table_lookup (collseqwc, wc);
-		}
-	      else
-		in_collseq = find_collation_sequence_value (pin, elem_len);
-	    }
-	  /* match with range expression?  */
-	  for (i = 0; i < cset->nranges; ++i)
-	    if (cset->range_starts[i] <= in_collseq
-		&& in_collseq <= cset->range_ends[i])
-	      {
-		match_len = elem_len;
-		goto check_node_accept_bytes_match;
-	      }
-
-	  /* match with equivalence_class?  */
-	  if (cset->nequiv_classes)
-	    {
-	      const unsigned char *cp = pin;
-	      table = (const int32_t *)
-		_NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
-	      weights = (const unsigned char *)
-		_NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
-	      extra = (const unsigned char *)
-		_NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
-	      indirect = (const int32_t *)
-		_NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
-	      int32_t idx = findidx (&cp);
-	      if (idx > 0)
-		for (i = 0; i < cset->nequiv_classes; ++i)
-		  {
-		    int32_t equiv_class_idx = cset->equiv_classes[i];
-		    size_t weight_len = weights[idx & 0xffffff];
-		    if (weight_len == weights[equiv_class_idx & 0xffffff]
-			&& (idx >> 24) == (equiv_class_idx >> 24))
-		      {
-			int cnt = 0;
-
-			idx &= 0xffffff;
-			equiv_class_idx &= 0xffffff;
-
-			while (cnt <= weight_len
-			       && (weights[equiv_class_idx + 1 + cnt]
-				   == weights[idx + 1 + cnt]))
-			  ++cnt;
-			if (cnt > weight_len)
-			  {
-			    match_len = elem_len;
-			    goto check_node_accept_bytes_match;
-			  }
-		      }
-		  }
-	    }
-	}
-      else
-# endif /* _LIBC */
-	{
-	  /* match with range expression?  */
-#if __GNUC__ >= 2
-	  wchar_t cmp_buf[] = {L'\0', L'\0', wc, L'\0', L'\0', L'\0'};
-#else
-	  wchar_t cmp_buf[] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'};
-	  cmp_buf[2] = wc;
-#endif
-	  for (i = 0; i < cset->nranges; ++i)
-	    {
-	      cmp_buf[0] = cset->range_starts[i];
-	      cmp_buf[4] = cset->range_ends[i];
-	      if (wcscoll (cmp_buf, cmp_buf + 2) <= 0
-		  && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0)
-		{
-		  match_len = char_len;
-		  goto check_node_accept_bytes_match;
-		}
-	    }
-	}
-    check_node_accept_bytes_match:
-      if (!cset->non_match)
-	return match_len;
-      else
-	{
-	  if (match_len > 0)
-	    return 0;
-	  else
-	    return (elem_len > char_len) ? elem_len : char_len;
-	}
-    }
-  return 0;
-}
-
-# ifdef _LIBC
-static unsigned int
-internal_function
-find_collation_sequence_value (const unsigned char *mbs, size_t mbs_len)
-{
-  uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
-  if (nrules == 0)
-    {
-      if (mbs_len == 1)
-	{
-	  /* No valid character.  Match it as a single byte character.  */
-	  const unsigned char *collseq = (const unsigned char *)
-	    _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB);
-	  return collseq[mbs[0]];
-	}
-      return UINT_MAX;
-    }
-  else
-    {
-      int32_t idx;
-      const unsigned char *extra = (const unsigned char *)
-	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
-      int32_t extrasize = (const unsigned char *)
-	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB + 1) - extra;
-
-      for (idx = 0; idx < extrasize;)
-	{
-	  int mbs_cnt, found = 0;
-	  int32_t elem_mbs_len;
-	  /* Skip the name of collating element name.  */
-	  idx = idx + extra[idx] + 1;
-	  elem_mbs_len = extra[idx++];
-	  if (mbs_len == elem_mbs_len)
-	    {
-	      for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt)
-		if (extra[idx + mbs_cnt] != mbs[mbs_cnt])
-		  break;
-	      if (mbs_cnt == elem_mbs_len)
-		/* Found the entry.  */
-		found = 1;
-	    }
-	  /* Skip the byte sequence of the collating element.  */
-	  idx += elem_mbs_len;
-	  /* Adjust for the alignment.  */
-	  idx = (idx + 3) & ~3;
-	  /* Skip the collation sequence value.  */
-	  idx += sizeof (uint32_t);
-	  /* Skip the wide char sequence of the collating element.  */
-	  idx = idx + sizeof (uint32_t) * (extra[idx] + 1);
-	  /* If we found the entry, return the sequence value.  */
-	  if (found)
-	    return *(uint32_t *) (extra + idx);
-	  /* Skip the collation sequence value.  */
-	  idx += sizeof (uint32_t);
-	}
-      return UINT_MAX;
-    }
-}
-# endif /* _LIBC */
-#endif /* RE_ENABLE_I18N */
-
-/* Check whether the node accepts the byte which is IDX-th
-   byte of the INPUT.  */
-
-static int
-internal_function
-check_node_accept (const re_match_context_t *mctx, const re_token_t *node,
-		   int idx)
-{
-  unsigned char ch;
-  ch = re_string_byte_at (&mctx->input, idx);
-  switch (node->type)
-    {
-    case CHARACTER:
-      if (node->opr.c != ch)
-        return 0;
-      break;
-
-    case SIMPLE_BRACKET:
-      if (!bitset_contain (node->opr.sbcset, ch))
-        return 0;
-      break;
-
-#ifdef RE_ENABLE_I18N
-    case OP_UTF8_PERIOD:
-      if (ch >= 0x80)
-        return 0;
-      /* FALLTHROUGH */
-#endif
-    case OP_PERIOD:
-      if ((ch == '\n' && !(mctx->dfa->syntax & RE_DOT_NEWLINE))
-	  || (ch == '\0' && (mctx->dfa->syntax & RE_DOT_NOT_NULL)))
-	return 0;
-      break;
-
-    default:
-      return 0;
-    }
-
-  if (node->constraint)
-    {
-      /* The node has constraints.  Check whether the current context
-	 satisfies the constraints.  */
-      unsigned int context = re_string_context_at (&mctx->input, idx,
-						   mctx->eflags);
-      if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context))
-	return 0;
-    }
-
-  return 1;
-}
-
-/* Extend the buffers, if the buffers have run out.  */
-
-static reg_errcode_t
-internal_function
-extend_buffers (re_match_context_t *mctx)
-{
-  reg_errcode_t ret;
-  re_string_t *pstr = &mctx->input;
-
-  /* Double the lengthes of the buffers.  */
-  ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2);
-  if (BE (ret != REG_NOERROR, 0))
-    return ret;
-
-  if (mctx->state_log != NULL)
-    {
-      /* And double the length of state_log.  */
-      /* XXX We have no indication of the size of this buffer.  If this
-	 allocation fail we have no indication that the state_log array
-	 does not have the right size.  */
-      re_dfastate_t **new_array = re_realloc (mctx->state_log, re_dfastate_t *,
-					      pstr->bufs_len + 1);
-      if (BE (new_array == NULL, 0))
-	return REG_ESPACE;
-      mctx->state_log = new_array;
-    }
-
-  /* Then reconstruct the buffers.  */
-  if (pstr->icase)
-    {
-#ifdef RE_ENABLE_I18N
-      if (pstr->mb_cur_max > 1)
-	{
-	  ret = build_wcs_upper_buffer (pstr);
-	  if (BE (ret != REG_NOERROR, 0))
-	    return ret;
-	}
-      else
-#endif /* RE_ENABLE_I18N  */
-	build_upper_buffer (pstr);
-    }
-  else
-    {
-#ifdef RE_ENABLE_I18N
-      if (pstr->mb_cur_max > 1)
-	build_wcs_buffer (pstr);
-      else
-#endif /* RE_ENABLE_I18N  */
-	{
-	  if (pstr->trans != NULL)
-	    re_string_translate_buffer (pstr);
-	}
-    }
-  return REG_NOERROR;
-}
-
-
-/* Functions for matching context.  */
-
-/* Initialize MCTX.  */
-
-static reg_errcode_t
-internal_function
-match_ctx_init (re_match_context_t *mctx, int eflags, int n)
-{
-  mctx->eflags = eflags;
-  mctx->match_last = -1;
-  if (n > 0)
-    {
-      mctx->bkref_ents = re_malloc (struct re_backref_cache_entry, n);
-      mctx->sub_tops = re_malloc (re_sub_match_top_t *, n);
-      if (BE (mctx->bkref_ents == NULL || mctx->sub_tops == NULL, 0))
-	return REG_ESPACE;
-    }
-  /* Already zero-ed by the caller.
-     else
-       mctx->bkref_ents = NULL;
-     mctx->nbkref_ents = 0;
-     mctx->nsub_tops = 0;  */
-  mctx->abkref_ents = n;
-  mctx->max_mb_elem_len = 1;
-  mctx->asub_tops = n;
-  return REG_NOERROR;
-}
-
-/* Clean the entries which depend on the current input in MCTX.
-   This function must be invoked when the matcher changes the start index
-   of the input, or changes the input string.  */
-
-static void
-internal_function
-match_ctx_clean (re_match_context_t *mctx)
-{
-  int st_idx;
-  for (st_idx = 0; st_idx < mctx->nsub_tops; ++st_idx)
-    {
-      int sl_idx;
-      re_sub_match_top_t *top = mctx->sub_tops[st_idx];
-      for (sl_idx = 0; sl_idx < top->nlasts; ++sl_idx)
-	{
-	  re_sub_match_last_t *last = top->lasts[sl_idx];
-	  re_free (last->path.array);
-	  re_free (last);
-	}
-      re_free (top->lasts);
-      if (top->path)
-	{
-	  re_free (top->path->array);
-	  re_free (top->path);
-	}
-      free (top);
-    }
-
-  mctx->nsub_tops = 0;
-  mctx->nbkref_ents = 0;
-}
-
-/* Free all the memory associated with MCTX.  */
-
-static void
-internal_function
-match_ctx_free (re_match_context_t *mctx)
-{
-  /* First, free all the memory associated with MCTX->SUB_TOPS.  */
-  match_ctx_clean (mctx);
-  re_free (mctx->sub_tops);
-  re_free (mctx->bkref_ents);
-}
-
-/* Add a new backreference entry to MCTX.
-   Note that we assume that caller never call this function with duplicate
-   entry, and call with STR_IDX which isn't smaller than any existing entry.
-*/
-
-static reg_errcode_t
-internal_function
-match_ctx_add_entry (re_match_context_t *mctx, int node, int str_idx, int from,
-		     int to)
-{
-  if (mctx->nbkref_ents >= mctx->abkref_ents)
-    {
-      struct re_backref_cache_entry* new_entry;
-      new_entry = re_realloc (mctx->bkref_ents, struct re_backref_cache_entry,
-			      mctx->abkref_ents * 2);
-      if (BE (new_entry == NULL, 0))
-	{
-	  re_free (mctx->bkref_ents);
-	  return REG_ESPACE;
-	}
-      mctx->bkref_ents = new_entry;
-      memset (mctx->bkref_ents + mctx->nbkref_ents, '\0',
-	      sizeof (struct re_backref_cache_entry) * mctx->abkref_ents);
-      mctx->abkref_ents *= 2;
-    }
-  if (mctx->nbkref_ents > 0
-      && mctx->bkref_ents[mctx->nbkref_ents - 1].str_idx == str_idx)
-    mctx->bkref_ents[mctx->nbkref_ents - 1].more = 1;
-
-  mctx->bkref_ents[mctx->nbkref_ents].node = node;
-  mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx;
-  mctx->bkref_ents[mctx->nbkref_ents].subexp_from = from;
-  mctx->bkref_ents[mctx->nbkref_ents].subexp_to = to;
-
-  /* This is a cache that saves negative results of check_dst_limits_calc_pos.
-     If bit N is clear, means that this entry won't epsilon-transition to
-     an OP_OPEN_SUBEXP or OP_CLOSE_SUBEXP for the N+1-th subexpression.  If
-     it is set, check_dst_limits_calc_pos_1 will recurse and try to find one
-     such node.
-
-     A backreference does not epsilon-transition unless it is empty, so set
-     to all zeros if FROM != TO.  */
-  mctx->bkref_ents[mctx->nbkref_ents].eps_reachable_subexps_map
-    = (from == to ? ~0 : 0);
-
-  mctx->bkref_ents[mctx->nbkref_ents++].more = 0;
-  if (mctx->max_mb_elem_len < to - from)
-    mctx->max_mb_elem_len = to - from;
-  return REG_NOERROR;
-}
-
-/* Search for the first entry which has the same str_idx, or -1 if none is
-   found.  Note that MCTX->BKREF_ENTS is already sorted by MCTX->STR_IDX.  */
-
-static int
-internal_function
-search_cur_bkref_entry (const re_match_context_t *mctx, int str_idx)
-{
-  int left, right, mid, last;
-  last = right = mctx->nbkref_ents;
-  for (left = 0; left < right;)
-    {
-      mid = (left + right) / 2;
-      if (mctx->bkref_ents[mid].str_idx < str_idx)
-	left = mid + 1;
-      else
-	right = mid;
-    }
-  if (left < last && mctx->bkref_ents[left].str_idx == str_idx)
-    return left;
-  else
-    return -1;
-}
-
-/* Register the node NODE, whose type is OP_OPEN_SUBEXP, and which matches
-   at STR_IDX.  */
-
-static reg_errcode_t
-internal_function
-match_ctx_add_subtop (re_match_context_t *mctx, int node, int str_idx)
-{
-#ifdef DEBUG
-  assert (mctx->sub_tops != NULL);
-  assert (mctx->asub_tops > 0);
-#endif
-  if (BE (mctx->nsub_tops == mctx->asub_tops, 0))
-    {
-      int new_asub_tops = mctx->asub_tops * 2;
-      re_sub_match_top_t **new_array = re_realloc (mctx->sub_tops,
-						   re_sub_match_top_t *,
-						   new_asub_tops);
-      if (BE (new_array == NULL, 0))
-	return REG_ESPACE;
-      mctx->sub_tops = new_array;
-      mctx->asub_tops = new_asub_tops;
-    }
-  mctx->sub_tops[mctx->nsub_tops] = calloc (1, sizeof (re_sub_match_top_t));
-  if (BE (mctx->sub_tops[mctx->nsub_tops] == NULL, 0))
-    return REG_ESPACE;
-  mctx->sub_tops[mctx->nsub_tops]->node = node;
-  mctx->sub_tops[mctx->nsub_tops++]->str_idx = str_idx;
-  return REG_NOERROR;
-}
-
-/* Register the node NODE, whose type is OP_CLOSE_SUBEXP, and which matches
-   at STR_IDX, whose corresponding OP_OPEN_SUBEXP is SUB_TOP.  */
-
-static re_sub_match_last_t *
-internal_function
-match_ctx_add_sublast (re_sub_match_top_t *subtop, int node, int str_idx)
-{
-  re_sub_match_last_t *new_entry;
-  if (BE (subtop->nlasts == subtop->alasts, 0))
-    {
-      int new_alasts = 2 * subtop->alasts + 1;
-      re_sub_match_last_t **new_array = re_realloc (subtop->lasts,
-						    re_sub_match_last_t *,
-						    new_alasts);
-      if (BE (new_array == NULL, 0))
-	return NULL;
-      subtop->lasts = new_array;
-      subtop->alasts = new_alasts;
-    }
-  new_entry = calloc (1, sizeof (re_sub_match_last_t));
-  if (BE (new_entry != NULL, 1))
-    {
-      subtop->lasts[subtop->nlasts] = new_entry;
-      new_entry->node = node;
-      new_entry->str_idx = str_idx;
-      ++subtop->nlasts;
-    }
-  return new_entry;
-}
-
-static void
-internal_function
-sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts,
-	       re_dfastate_t **limited_sts, int last_node, int last_str_idx)
-{
-  sctx->sifted_states = sifted_sts;
-  sctx->limited_states = limited_sts;
-  sctx->last_node = last_node;
-  sctx->last_str_idx = last_str_idx;
-  re_node_set_init_empty (&sctx->limits);
-}




More information about the sword-cvs mailing list