
Bible Software Industry Standards Group

Standard Template for Electronic Publishing (STEP)

[image: image1.png]

Developed By Parsons Technology in Cooperation With

NavPress Software

White Harvest Software

Loizeaux Brothers Publishers

and the other members of the Bible Software Industry Standards Group (BSISG)
Caveat Emptor!

This specification is subject to change without notice. Changes are made at the discretion of the members of the Bible Software Industry Standards Group. This group made up of those companies and individuals that are actively participating in developing STEP-Compatible software.

Comments and questions regarding this specification should be directed to Craig Rairdin at Parsons Technology via email to: crairdin@parsonstech.com.

This document is distributed in Microsoft Word 97 format. A viewer for Word 97 documents is available from Microsoft at www.microsoft.com. Printed copies of the specification are available for a nominal fee from the STEP Administrator, Peter Bartlett at Loizeaux Brothers Publishers. Contact Peter via e-mail at bcsoft@bellatlantic.com.

In the rapidly changing world of software development and electronic publishing, it should go without saying that this document tends to lag reality. Anyone who is actively developing STEP books or STEP software should not be doing so without being in contact with BSISG through the STEP Administrator so that they can be kept up to date on the latest developments.

A log of changes is included on the last page of this document.

Enjoy!

[image: image2.png]

Craig Rairdin

Vice President

Church Software Division

Parsons Technology, Inc.

STEP Publishing Specification

Version 1.1

This document contains information pertinent to content publishers wishing to do electronic publishing using the STEP data standard. Software publishers interested in creating STEP-compatible book readers should review the complementary STEP Programming Specification.

Overview

This document specifies the Bible software industry’s Standard Template for Electronic Publishing (STEP). This standard allows independently developed electronic books to be compatible with Bible software developed by a number of companies.

The STEP Standard is described in two complementary documents. The STEP Publishing Specification contains information pertinent to electronic book publishers wishing to create STEP books. The STEP Programming Specification contains detailed descriptions of the file formats that constitute a STEP book. You are reading the STEP Publishing Specification.

This document briefly describes the process of creating electronic books, then focuses on the formats of input files and the anticipated behaviors of Book Reader software products that display electronic books formatted in this fashion.

The process of acquiring the tools and licensing the STEP logo is described elsewhere.

The general flow of the process of creating STEP books is as follows:

· The Book Publisher creates a version of the book that contains command words which identify hyperlinks, multimedia elements, etc. and saves this file in RTF format (RTF is a Microsoft file standard which is supported across multiple hardware and software platforms).

· The Book Publisher runs a Conversion Program supplied by the STEP Administrator, which creates supporting index files. This program identifies problems and ambiguities in the source documents, which the Book Publisher must correct. This step is then repeated until no further discrepancies are reported.

· The Book Publisher arranges the resulting files for his book(s) on the distribution medium. He may also license compatible Book Reader software from one of the participating software companies (or create his own book reader) and distribute it along with the book(s). This allows users to view his books “stand-alone” in the unlikely case that they own no other Book Reader or STEP-compatible Bible software.

· Software publishers desiring to create Book Reader software compliant with STEP write that software following the file specifications and intended behaviors detailed herein and in the STEP Programming Specification.

What is STEP?

Technically, STEP is the format of the data files described in the STEP Programming Specification. As long as books end up in this format, they are STEP books — regardless of where they came from. But for simplicity, the Bible Software Industry Standards Group (BSISG) has created a common Conversion Program which accepts files in a particular format (i.e. Microsoft’s Rich Text Format (RTF) with special STEP tags added) and creates STEP books. It is this source (or input) format that is specified in this STEP Publishing Specification.

Theoretically, a group of programmers could create programs that accept books in any format (HTML, PDF, etc.) and create STEP books. They need only make sure the output of the process matched the format of the files specified in the Programming Specification. Publishers with programming capability and high aspirations do not need to feel obligated to maintain compatibility with this input format if their needs can be met in a more efficient way through some other input format. For all practical purposes, however, publishers can consider the “tagged RTF” specified by this STEP Programming Specification to be STEP.

Definitions of Terms

STEP Administrator

Refers to the organization responsible for overseeing the use and marketing of the STEP standard. The Administrator supplies to Book Publishers the Conversion Program that is used for the creation of electronic books. It also assigns Publisher ID numbers.

Conversion Program

This is a program that converts the Book Publisher’s tagged RTF version of the book into the collection of files used by Book Readers to display the book to the user. The Conversion Program is acquired from the STEP Administrator.

Book Reader

This is the software that reads electronic books developed to this standard. Anyone can develop Book Reader software. It can be a stand-alone program or can be integrated into a company’s Bible software product.

Book Publishers

Refers to companies that are creating content and publishing it according to the standard.

Software Publishers

Refers to companies that create Book Reader or Bible software. Note that a company can be both a Book Publisher and a Software Publisher.

Bible software

Software such as Parsons’ QuickVerse, Biblesoft’s PC Study Bible, NavPress’ WordSearch or White Harvest’s Seedmaster that displays and searches Bible text and communicates with (or includes the functionality of) Book Reader software.

Book Publisher-Generated Files

BOOK.RTF

This file will be the primary data file storing all book text and display formatting. The Book Publisher must create the book document using a word processor that will write RTF files and support entry of hidden text, such as Microsoft Word for Windows (strongly recommended). The Book Publisher should include all text formatting and layout it would like the end-user to see on screen.

To create a STEP book, the Book Publisher starts with the text of the book in an RTF file and adds “tags” called “control words.” These control words provide information to the Conversion Program that permits it to create STEP books that support Bible synchronization, searching and cross-referencing. They delimit sections, define cross reference links, Bible verse links and Bible synchronization links, hypertext links, and multimedia elements. All STEP control words take the following form:

{\ControlWord: Information}

All of these new control words can be entered using the hidden text attribute. This will enable the Book Publisher to view the file as it will appear on the user’s screen, but still allow visible entry of the control codes (by toggling hidden text view on/off).

The STEP Administrator will provide tools for the Book Publisher to use in conjunction with Word for Windows to help create compliant books. These tools are implemented as macros in Word and facilitate the easy entry of control words using familiar dialog boxes and selection lists.

Header Control Words

The following information must appear at the beginning of the book, before any of the book text. Each control word must start at the beginning of a line. These codes provide the Book Reader with basic information about the book; Book Readers will use these fields to provide users the book and copyright information in an “About box” or other appropriate dialog boxes.

The Title, Copyright, Edition, PublisherID, BookID, and EditionID fields are all required. Other fields are optional.

Any control words below that match standard RTF control words (such as Title and Author) will replace the contents of anything the Book Publisher explicitly sets those values to using features in his word processor. For example, consider the case where the name of the author of the book is entered in the Author field in the Summary Info dialog box in Microsoft Word as “John Jones.” If the author’s name is entered using the Author control word as “{\Author: Jones, John},” the format in the latter takes precedence and the author’s name will appear in the electronic book as “Jones, John.”

Software publishers writing Book Reader software will provide a way for all of this information to be displayed within their programs. The format in which it will be displayed is not specified in this document.

Control Word
Explanation
Example

Required Fields

{\Title:}
Title of work
{\Title: Exploring the Scriptures}

{\Copyright:}
Copyright statement
{\Copyright: Copyright © 1965, 1970 by John Phillips. All Rights Reserved.}

{\Edition:}
Edition of book
{\Edition: First}

{\PublisherID:}
Publisher ID number assigned by STEP Administrator
{\PublisherID: 1234}

{\BookID:}
Unique book ID number assigned by Book Publisher
{\BookID: 37}

{\EditionID:}
Numeric representation of edition of book
{\EditionID: 1}

Optional Fields

{\Acknowledgments:}
Author’s acknowledgment statements.
{\Acknowledgments: The chart in chapter 1 is from Inside the Scriptures and is used by permission. etc.}

{\Author: }
Author of work
{\Author: Phillips, John }

{\CIP:}
Library of Congress Cataloging In Publication data
{\CIP: etc.}

{\Editors: }
List of Editorial staff
{\Editors: Smith, Joe and Miller, Susan}

{\ISBN: }
ISBN number
{\ISBN: 0872136736}

{\OtherInfo:}
Other information publisher wishes to include.
{\OtherInfo: To my lovely wife, Lovey}

{\Permission:}
Permission to quote.
{\Permission: No part of this book may be reproduced without etc...}

{\Publisher: }
Name of book’s publisher
{\Publisher: Loizeaux Brothers, Inc.}

{\PublisherLoc:}
Location of book’s Publisher
{\PublisherLoc: Neptune, New Jersey}

{\SetID:}
Set ID number assigned by Book Publisher.
{\SetID: 3}

{\SetName:}
The readable text name of the set.
{\SetName: The World’s Greatest 66 Volume Commentary Series}

{\SyncType:}
Synchronize book to other software using one of the following methods: current verse, current word, current Strongs number, date. If included in a book which does not contain a SyncType, the type may be left blank.
{\SyncType: Verse} or
{\SyncType: Word} or
{\SyncType: Strongs} or
{\SyncType: Date} or

{\SyncType: }

{\VolumeNo: }
Volume Number
{\VolumeNo: Volume 1}

Description of Header Control Words

Title

Specify the exact title of the book. Should match the title given in VOLUME.INI (see below), though the Conversion Program does not verify this fact. Book Reader software can make use of this title to identify the book to the user.

Copyright

Specify the full copyright statement desired for use with the book. Book Reader software will display this copyright message at an appropriate point within the program.

Edition

This field is carried over from previous versions of the STEP specification and is used to differentiate between subsequent editions of the electronic book. Originally, the STEP Publishing Specification implied that the information in this field could be used by Book Readers to determine which particular edition of the electronic book is being used. This might come in handy if the Book Reader makes use of special indexes or supplementary files that are keyed to the sections or viewable blocks (see descriptions below) in a particular edition of the book. By examining this field the Book Reader would be able to determine if its supplementary files were compatible with the edition of the book being used.

Version 0.91 of the Publishing Specification adds the EditionID field, which makes it easier to specify the edition of a book numerically. See the discussion of “Identifying Books by PublisherID, BookID and EditionID” on page 17.

PublisherID

The STEP Administrator assigns each Book Publisher a unique ID number. When combined with the Book ID number assigned by the Book Publisher, this creates a unique identification for every book published under the STEP standard. The Publisher ID number is included here so that it can be inserted where needed into index files generated by the Conversion Program.

BookID

Each Book Publisher assigns a unique book number to each of its books. Book numbers must be in the range of 1 to 65535, inclusive. The Book Publisher can use any system (or no system) to assign these numbers. The Book ID number is included here so that it can be inserted where needed into index files generated by the Conversion Program. See also the discussion of SetID, below.

EditionID

The Book Publisher assigns each edition of an electronic book a numeric edition number. The first edition of an electronic book would be edition 1. Subsequent editions are numbered sequentially, with 255 as the maximum allowed.

This control word was added in STEP version 0.91. For books created with prior versions of the STEP Conversion Program, the value of EditionID will be assumed by Book Readers to be zero. Book Readers will treat edition 0 and edition 1 books as being identical. See the discussion of “Identifying Books by PublisherID, BookID and EditionID” on page 17.

Acknowledgments

Use as much space as is necessary to include all acknowledgments.

Author

The name of the author(s) in the format you wish it displayed to the user.

CIP

Library of Congress Cataloging in Publication Data.

Editors

The name of the editor(s) of the printed edition of book.

ISBN

ISBN number of the printed edition of the book, or of the electronic edition if one is assigned uniquely to that book.

OtherInfo

Any information that might normally appear on the title or copyright pages of the book which is not covered by any of the other fields.

Permission

Permission to quote statement which applies to the electronic edition.

Publisher

Name of publisher of the printed edition of the book.

PublisherLoc

City, State or Country of publisher as it would appear in a bibliography.

SetID

Each Book Publisher may assign a unique set number to any series of its books that it wishes the user to be able to treat as if it were one book. For example, a commentary series consisting of 66 bound volumes might all be assigned one SetID so that the Book Reader can treat searches and synchronization in a special way. The Set ID number is included here so that it can be inserted where needed into index files generated by the Conversion Program. The Book Publisher should be careful to make sure the SetID in VOLUME.INI matches the one in the book.

Set numbers must be in the range of 1 to 65535, inclusive. The Book Publisher can use any system (or no system) to assign these numbers. If SetID is not present in VOLUME.INI for this book, or if SetID is zero, the book is assumed to not be in a set. For any other value, the Book Reader may choose to present the set of books to the user in a way so it appears to be one large book. If the Book Reader implements SetID support, the books within the set will appear in BookID order.

Note: though the SetID is an optional control word, some versions of the STEP tagging tools and conversion program supplied to STEP publishers may require that the SetID control word be inserted in the BOOK.RTF file. If you find that this is the case and are publishing a book that is not part of a set, leave the ID blank. That is, {\SetID: } is permissable.

SetName

Set name is the name of the set to which the book belongs. It is used to identify the set by name to the user.

SyncType

Electronic books can be “synchronized” to display text keyed to Bible verses, particular words, Strongs numbers, or dates. For example, a commentary that follows a verse-by-verse (or roughly verse-by-verse) layout could be set up so that as the user is viewing a verse in his Bible program, the commentary section for that verse will be displayed. The value in this field tells the STEP conversion utility programs what type of index to generate for this work. It should match the SyncType given in VOLUME.INI but the Conversion Program does not necessarily verify this fact.

Note: though the SyncType is an optional control word, some versions of the STEP tagging tools and conversion program supplied to STEP publishers may require that the SetID control word be inserted in the BOOK.RTF file. If you find this to be the case and are publishing a book that is not synchronized, leave the type field blank. That is, {\SyncType: } is permissable.

VolumeNo

The volume number in a series of books. Leave this field out if there is no volume number for this book. Note that this field is for identification purposes only. It is not used in the creation of a “set” of books, described under SetID, above.

Document Control Words

The following control words are used within the book to delimit sections, describe hyperlinking behavior and synchronization, etc.

Logical structure is imposed upon the book through the use of the Leveln and EndViewableText commands. The Leveln command is used to create a hierarchical outline of the book and to divide the book into logical sections. Level1 is the highest level of the outline, Level2 is “indented” one level, etc. This permits Book Readers to display an expandable/collapsible outline of the contents of the book and provides points to which hypertext links can jump.

Text from the book is displayed in discrete blocks, which are terminated by the EndViewableText command. These blocks should be designed to be small enough so that the user doesn’t have to scroll through many pages of text and large enough so that the information presented seems complete and logical. Each block may contain one or more Leveln statements. A block should begin with a Leveln statement in order to assure that the text at the beginning of the block is addressable.

The first block of text is assumed to start at the beginning of the document (after the header control words) and continues until the first EndViewableText command. Subsequent blocks begin following the end of the preceding block and continue until the next EndViewableText command. The last block ends at the end of the document or at the first Glossary control word. (Note that no further Leveln or EndViewableText control words may appear after the first Glossary control word. In other words, all Glossary sections are located at the end of the document.).

Any section (demarcated by a Leveln control word) can be used as the target of a LinkTo command. Activation of a link by the user should result in the block of text containing the target section to be loaded, and the text scrolled to the beginning of the section.

Level names do not have to appear on the user’s screen. They are used only to identify the section for use in LinkToLevel controls.

Control Word
Explanation
Example

{\Leveln: name}
Marks a section of text as belonging to a particular level in the book’s hierarchical outline
{\Level1: Chapter 1}
{\Level2: In the Beginning}

{\Glossary: name}
Delimits the beginning of a glossary section, provides section identification name
{\Glossary: Christology}

{\Link}
Delimits the start of a link word (to be highlighted by book reader)
(see example of LinkToLevel, below)

{\LinkToLevel: Name1\Name2\Name3\etc.}
Delimits the end of a link word, specifies the point in the book outline this word links to.
{\Link}See page 3{\LinkToLevel: Chapter 1\In the Beginning}

{\LinkToGlossary: name}
Delimits the end of a link word, specifies the glossary term this word links to
.... is known as {\Link} “Christology.” {\LinkToGlossary: Christology}

{\LinkToMM: name, title}
Delimits the end of a link word, and specifies multimedia element this word links to.
.... can be seen in the {\Link} photograph {\LinkToMM: “NOAHARK.BMP”, “Noah’s Ark”}

{\LinkToBook: publisherID\
bookID\bookname\name1\
name2…}
Delimits the end of a link word, and specifies the book and section this word links to.
{\LinkToBook: 123\31\Exodus Commentary\Chapter 1\Let My People Go}

{\LinkToBible: verse}
Delimits the end of a link word, and specifies a Bible verse this word links to.
.... can be found in {\Link}John chapter three, beginning in verse ten {\LinkToBible: John 3:10}

{\SetBibleContext: reference}
Helps the Bible verse parser identify ambiguous verse references without having to modify the text of the book to explicitly give full verse citations.
In Revelation 5, John writes of the lamb {\SetBibleContext: Revelation 5} (6, 8, 12, 13) using terminology similar to his Gospel account {\SetBibleContext: John} (1:29, 36)

{\BibleLinksOff}
{\BibleLinksOn}
BibleLinksOff turns off the Bible verse parser until the next BibleLinksOn is encountered in the text.
{\BibleLinksOff}Matthew reports darkness from between the hours of 6-9, or noon to 3:00.{\BibleLinksOn}

{\SyncTo: text}
Tells Book Reader to scroll to this point in the book when the synchronization text is received. Format of text depends on SyncType.
{\SyncTo: John 3:16} (“verse”) or
{\SyncTo: Abraham} (“word”) or
{\SyncTo: G26} (“Strongs”) or
{\SyncTo: March 1} (“date”)

{\EndViewableText}
Marks the end of a block of text for viewing purposes
…and that, as they say, is that.
{\EndViewableText}

{\Language: language name}
Changes the active language in the text.
{\Language: Hebrew} . . . {\Language:English}

{\ConcordanceOther: alternate spelling}
Places an alternate spelling of the current word in the concordance.
The apostle Paul{\ConcordanceOther: Saul}

{\ConcordanceOff}
{\ConcordanceOn: replacement}
Words between ConcordanceOff and ConcordanceOn are not recorded in the book’s concordance. If replacement is specified, then replacement is put in the concordance instead of this word.
{\ConcordanceOff} 23 {ConcordanceOn} Behold, a virgin shall be with child, and shall bring forth a son, and they shall call his name Emmanuel, which being interpreted is, God with us. Or
{\ConcordanceOff} šóñ {\ConcordanceOn: son}

“Smart Quotes” or "Straight Quotes" ?

For purposes of readability, this specification includes smart quotes in place of straight quotes. However, in all control words, you should use straight quotes.

Description of Document Control Words

Leveln

Identifies the start of a new section of the book corresponding to level n in the book’s hierarchical outline and gives the section a name. Sections continue until the next Leveln, EndViewableText or Glossary control word or the end of the file, whichever comes first. NOTE: Any changes to the book that add or delete entries in the book’s outline should cause a new Edition and EditionID value to be used so that Book Readers can make any necessary adjustments (see page 17). Level names may be displayed by the Book Reader, perhaps as the title of the window displaying the text of the section, though this is not required.

Because the backslash character is used to separate level names in some STEP control words, this character should not be used as a part of any level name.

EndViewableText

Marks the end of a block of displayed text. The book is divided into blocks. Book Reader software displays one block at a time. A block may include one or more sections (designated by Leveln commands). The first block begins with the first displayable character in the book. The last block ends at the end of the document. Blocks are also terminated by Glossary commands. (Each Glossary section is assumed to occupy its own block, so no EndViewableText commands are necessary within Glossary sections.)

A Software Publisher may design a Book Reader in such a way that it ignores EndViewableText blocks and displays the book as one continuous stream of text.

Any changes to the book between subsequent releases of the book which add or remove EndViewableText commands should result in a new Edition and EditionID of the book (see page 17).

Glossary

Identifies the start of a glossary section. Glossary sections continue until the next Glossary control word or the end of the file, whichever comes first. No additional Leveln or EndViewableText control words may appear after the first Glossary command. Glossary sections are similar to regular sections in most respects, except that they are not displayed as part of the normal “flow” through the book from section to section. They are only displayed as a result of activation of a hyperlink with a LinkToGlossary control word. See the discussion of LinkToGlossary for the desired behavior of these sections.

Link

Defines the beginning point in the text at which the Book Reader will apply the “link attribute”. In other words, the Book Reader needs to identify to the user what to click on to activate a hyperlink jump. All characters following the Link control word and previous to the LinkTo... control word will be highlighted in some fashion by the Book Reader, thus identifying words that are “clickable.” There must be a LinkTo control word for every Link control word. The Conversion Program will identify “missing Links.”

LinkToLevel

Defines the end of the link attribute text and the target for the hyperlink. The level name is fully specified starting from the appropriate Level1 name, with each subsequent name separated from the previous by a backslash (“\”).

LinkToGlossary

Defines the end of the link attribute text and the target for the glossary hyperlink. Glossary entries are used to define “pop up windows” that contain a brief amount of text describing the link word. While typically used as a glossary, this feature could also be used as an implementation of footnotes or some other feature of the book. Book Readers can either display the glossary text in the same way any other hyperlink text is displayed, or (more desirable) they can pop up a small window displaying the target text that can be closed by either clicking anywhere on the screen or by releasing the mouse button.

LinkToMM

Defines the end of the link attribute text and the target for the multimedia hyperlink. The specification requires Software Publishers to support only BMP (ie. color images) files. Some implementations may support other popular multimedia file formats such as WAV (sound) and AVI (video) files. The manner in which the multimedia elements are displayed is up to the Book Reader software to determine. Unrecognized multimedia types can be ignored entirely by the Book Reader.

Publishers have a choice between embedding bitmaps (by simply pasting them into the text in their word processor) or using the LinkToMM feature to display a bitmap. The main consideration is the appearance to the user. Remember that the user will typically be viewing text in a relatively small window, which may be tiled with other windows and be relatively narrow. In order to get any detail at all, .BMP files are typically fairly large — close to the full size of a 640 x 480 VGA screen size. If a picture of this size were embedded in a document, the user would either have to maximize the document window to see the whole picture, or use the scroll bars to move around. With the latter option only a small portion of the picture would be visible at any one time. By using LinkToMM for large images, the Book Reader can create a window large enough for the entire picture to be viewed without scrolling.

Another option is to embed a small version of the picture in the document, then have a link to the large picture.

The multimedia files for a book can be compressed and stored in one common file using technology available as part of the STEP Publishers Toolkit. See Appendix D.

LinkToBook

Defines the end of the link attribute text and the target for a book hyperlink. This provides a method for linking a word to a section in another book. The book can be one of the publisher’s own books or one from another publisher. The only requirement is that the exact section name (ie. full Leveln path), PublisherID, and BookID be known. Book Reader software will ignore requests for linking to books that the user does not own. (The Book Reader may display an error message, or simply not mark the link word as a link if it knows the link is impossible.)

The name of the book is included. The Book Reader should only use this name for the purpose of displaying error messages. To find the book itself, the Book Reader should rely on the PublisherID and BookID. Any edition of the book known by the Book Reader may become the target of this link.

LinkToBible

Defines the end of the link attribute text and the target for the Bible hyperlink. This provides a method of manually linking a Bible reference to its corresponding verse in the Bible. Normally, the verse reference parser in the Conversion Program will locate all Bible references. LinkToBible allows the Publisher to manually create a Bible link for those cases that the Conversion Program can’t resolve.

SetBibleContext

The Conversion Program automatically finds references to Bible verses within the book and generates control words that are used by the Book Reader software to create links to Bible software. It can be difficult for the Conversion Program to identify certain constructs that are easy for the human reader to comprehend. This can be seen in the following excerpt: “In Revelation 5, John writes of the lamb (6, 8, 12, 13) using terminology similar to that used in his Gospel account (1:29, 36).” The human reader can easily determine that “6, 8, 12, 13” refers to Revelation 5:6, 8, 12 and 13, and that “1:29, 36” refers to John 1:29 and 36. The Conversion Program, however, is confused by the name of the author of Revelation (John), which happens to match the name of another book of the Bible (the Gospel of John). Furthermore, referring to the Gospel of John as “his Gospel” does not give the program enough information to unambiguously identify “1:29, 36.” Including the SetBibleContext control word lets the Book Publisher tell the Conversion Program that all Bible references after this point (until some other contextual clue or SetBibleContext control) refer to the book or book and chapter given in the SetBibleContext control word.

BibleLinksOff and BibleLinksOn

Certain constructs that look like Bible verse references can confuse the Bible reference parser in the Conversion Program. Typical problems are times (3:16 PM) and amounts of money ($3.16). These usually will not cause a problem unless they are preceded by the name of a valid book. The sentence given in the example in the Document Control Word table (page 12) could potentially confuse the parser, as it might attempt to link “6-9” to Matthew 6-9 and “3:00” to Matthew 3:0. (In reality the latter is not a problem since the parser knows verse zero does not exist. In general, times such as 3:15 and 3:30 can present problems.).

Language

The language keyword (added in version 1.0 of the STEP specification) is used to identify the target language of the words that follow. The default language at the beginning of a book is always English, but you can change the language at any time. The languages currently supported by STEP and the font that should be used to input words in that language are listed in the following table:

Language
Font

English
Any ANSI font

Greek
SP Ionic

Hebrew
SP Tiberian

TransAramaic
SP Atlantis

TransGreek
SP Atlantis

TransHebrew
SP Atlantis

TransOther
SP Atlantis

Latin
Any ANSI font

French
Any ANSI font

German
Any ANSI font

Spanish
Any ANSI font

Note that these fonts are only necessary for input when using a word processor such as Microsoft Word that is not language-aware. If you have a body of electronic text that you wish to get into STEP format more directly, you can simply output RTF in Unicode (2 byte characters) with the language keywords in the appropriate place to bypass the need to use these fonts.

The language keyword also acts a little differently than other STEP keywords in that it can be nested. Here is an example:

{\Language:French}Résumé{\ConcordanceOther:{\Language:English}resume} is how the French spell resume.

In this example, the first spelling of resume is put in the French language in the concordance. The second spelling is put in the English concordance with the same word position as the French spelling. The rest of the sentence after the {\ConcordanceOther:} is in English as well since the language was changed to English inside that control word.

ConcordanceOther

{\ConcordanceOther: spelling} is used to put another spelling of a word in the concordance with the same word position as the current word. The other spelling will not be visible to the user in the text, but will be available through the CONCORD.IDX file for searching. See the example in the {\Language:} keyword desciption above. This control word was added in version 1.0 of the STEP specification.

ConcordanceOff and ConcordanceOnThese control words allow you to turn off the recording of words in the concordance or to replace the spelling of a word with another spelling. The former is valuable when characters or words occur in the text for which it is not desired that the user be able to search. The latter is used to substitute spellings when the word in the book uses a non-standard font to represent some or all of its letters (such as is the case with so-called “self-pronouncing” Bibles). In this case the substitute spelling appears in the concordance.

Note that the Book Reader will need to be able to recognize these substitutions when they are encountered in the book, and highlight the replaced word to mark a search hit. Furthermore, it needs to not recognize words in the text for which the concordance has been shut off when marking “hits.” See the description of BOOK.DAT on page 35 for information on how replacement spellings are encoded in the data file.

SyncTo

The SyncTo command identifies the section of the book that will be displayed if the Book Reader receives a request to synchronize the book to a particular Bible verse, word, Strongs number, or date (other synchronization types may be defined in the future). A SyncTo command applies to the immediately preceding Leveln section. That is, the section containing the SyncTo command will be displayed when the synchronization request is received. A section can contain more than one SyncTo command, though a book can be synchronized by only one type of data. The format of each of the types of SyncTo commands follows.

{\SyncTo: reference}

Reference is a Bible verse citation. The reference can be one verse (“John 3:16”) or several (“John 3:16-18” or “John 3”). Furthermore, the reference can include discontinuous ranges of verses (“John 1:1,14”).

{\SyncTo: word}

Word is any sequence of characters. This synchronization method is most commonly used for dictionary-type resources.

{\SyncTo: Strongs number}

Strongs number is a “G” for “Greek” or “H” for “Hebrew” followed by a sequence of digits and an optional letter. The Conversion Program treats Strongs number very similarly to a word (above), allowing virtually any numbering/lettering scheme to be used.

{\SyncTo: date}

Date is in the form month day where month is the name of the month (January, February, March, April, May, June, July, August, September, October, November, or December) or its ordinal value representing its position within the preceding list (January is 1). Day is the day of the month.

Date ranges (March 1-4) are not supported. But since a section can have multiple SyncTo commands associated with it, the same effect can be accomplished by including four separate SyncTo commands.

Identifying Books by PublisherID, BookID and EditionID

Effective with version 0.91 of the STEP Specification, books are uniquely identified by the combination of three values found in the Header Control Words: PublisherID, BookID and EditionID. The EditionID of a book published prior to 0.91 is assumed to be zero. Book Readers will treat edition 0 books and edition 1 books (with the same PublisherID and BookID values) as the same book.

(Previous versions of STEP assumed that a book could be uniquely identified by PublisherID combined with BookID. Dependence on the Edition of the book was not strictly enforced.)

When to Assign a New EditionID

All books published by one publisher are published under the same PublisherID. Publishers assign unique BookID values to each book. Then for each book, the publisher assigns an EditionID beginning with 1 and increasing by one for each new edition of the electronic book.

The purpose of EditionID is to identify changes to the book that may invalidate certain assumptions that may have been made based on previous editions. In particular, if the names, number, or order of sections or viewable blocks (identified by Level and EndViewableText control words, respectively) changes between one release of a book and the next, then the EditionID of the latter version of the book should be incremented.

A book reader may also use the EditionID to determine if data files from one installation of the book may be mixed with data files from a different installation of the book. For example, all .IDX files from Book 1 of CD A are installed to the hard drive. Book 1 is also contained on CD B. Since it is generally faster to read data from the hard drive than the CD, the book reader may desire to read the IDX files from the hard drive, and the additional files from either CD A or B. If the EditionID of the book on CD A is the same as that on CD B, the book reader may assume that it is permissible to use the IDX files from CD A with the book files from CD B. If the EditionID’s are different, however, the book reader will assume that it cannot mix these two files. Therefore, any changes to a book that would cause files from a previously released version of the book to be incompatible with the newly released version would require that the EditionID be incremented.

Why Doesn’t LinkToBook Require EditionID?

When creating links between books using the LinkToBook control word, only the PublisherID and BookID values are specified. Because section names can change between editions, it’s possible that the target of the link does not exist in the edition of the book owned by the user. This leads to the conclusion that LinkToBook should include EditionID as part of the target.

The problem with this approach is that links would become outdated if the user bought a later edition of the book — even if the new edition contained the target section. Since LinkToBook references the section by its name and not its internal section number, it’s possible to find the section even if the new edition has added sections — as long as the path to the target section is still the same. Therefore, by leaving EditionID out of the LinkToBook control word, we prolong the “useful life” of the link: If the link can be resolved in the new edition, the hypertext jump works; if not, it will fail. But it will never fail just because the EditionID changed and nothing else.

VOLUME.INI

The VOLUME.INI file serves as the interface between the STEP books shipped to a user and the user’s STEP Book Reader software. Through the information in VOLUME.INI the Book Publisher tells the Book Reader software what books it can expect to find and how they are organized. VOLUME.INI describes who the publisher is, what books are on the CD (or other medium), where they are located and other information necessary for the Book Reader to be able to add the book(s) to the user’s collection of STEP titles.

Book Readers should be able to “install” new books by prompting the user to select the appropriate drive and directory containing VOLUME.INI. Based on the information in this file, the Book Reader can take whatever steps are necessary to save a list of installed books and where they are located.

For books published on a CD-ROM, the VOLUME.INI file typically resides in the root directory of the CD. Each book resides in its own directory on the CD.

Books installed from floppies or other medium where the data is compressed and not immediately readable by a STEP Book Reader should include an installation program that decompresses the files and arranges them on the user’s hard drive. A VOLUME.INI file can then be installed onto the hard drive that describes the data that has been installed. The Book Reader can then use this VOLUME.INI file to install the book just as if it resided uncompressed on a CD or floppies.

VOLUME.INI is an ASCII text file consisting of three major sections: Publisher Data, Book Data, and Set Information. A label in square brackets identifies each section. There is only one Publisher Data section. There are as many Book Data sections as there are books being delivered as part of the collection. There are zero or more Set Information sections, depending on whether or not any of the books are elements of a set. (Sets are described in the discussion of the SetID control word on page 9 and are further described below.)

Each entry in VOLUME.INI as described below is a single line in the file.

Publisher Data

VOLUME.INI begins with a label identifying the beginning of the Publisher Data section:

[Publisher Data]

The Publisher Data section of the file contains the product name of the book or collection of books described by the VOLUME.INI file. It also contains entries for the publisher’s name and STEP Publisher’s ID number.

DataSetName=Name of this Collection or Book
The Data Set Name is the name by which the CD or disk will be identified to the user if/when the Book Reader needs it to be inserted into the drive. It should be the name of the product as it appears on the box or the CD/disk label so that the user can clearly identify the disk from among many disks he may own.

PublisherName=Name of Publisher
This line gives the name of the publisher, and is optional. If present, it is assumed to be the name of the publisher of all of the books listed in the Books section that do not specifically give the name of a publisher. If it is not present, then all books must identify their publisher in the Books section that follows.

Choosing a name to enter here is straightforward if the publisher of the CD is the publisher of all the books on the CD. In this case, the name is the name of the publisher. However, it is often the case that a software publisher or other entity is publishing on behalf of one or more book publishers who may have contributed content to the collection of books on the CD. In this case, either the publishing entity’s name can be used or, if all the books are from one book publisher and if the Publisher ID (below) is uniquely associated with that book publisher, the name of the book publisher can be used here.

PubID=STEP Publisher ID Assigned to PublisherName
This line identifies the STEP Publisher’s ID associated with the publisher whose name appears in the PublisherName line. It is optional. If it is present, it is assumed to be the PubID for all of the books listed in the Book Data section which do not specifically state a publisher ID. If it is not present, then all books must identify their publisher’s ID number in the Book Data section that follows.

Publisher’s ID number is unique to the publisher and is assigned by the STEP Administrator. It is the same for all electronic books published by the publisher.

Book Data

Each book being shipped as part of this collection must be described in a Book Data section of VOLUME.INI. For each book, an entry will name the book, its publisher, and give other identifying information.

Each book’s description starts with a label as follows:

[Book n]

In each case “n” is just a different number for each book in the VOLUME.INI file, starting with 1. Note that these numbers simply serve to demarcate the beginning of the book’s description and are not the same as the STEP Book ID that appears in the description. The first book entry in this VOLUME.INI file should be [Book 1], the second [Book 2], etc.

Name=Name of the Book
This is the name of the book as it will appear in the Book Reader.

Path=Path to Directory Containing this Book
This is the directory path where the STEP files for this book can be found on the CD or other medium. It is relative to the location of the VOLUME.INI file itself. So if the path is stated as “Genesis” then it is assumed that there is a subdirectory called “Genesis” within the same directory as the VOLUME.INI file which can be expected to contain the STEP files for the book. On the other hand, if the path is stated as “\books\Genesis” it is assumed that there is a “books” directory in the root directory of the CD, and a “Genesis” directory within “books” that contains the STEP files for the book. In this latter case, the VOLUME.INI file could be anywhere on the CD, since the path is fully specified from the root.

PubID=STEP Publisher ID for this Book
This line is optional. If this book is not published by the publisher whose name and ID appears in the Publisher Data section, then it should have its own PubID line. If there is a PubID line in the Publisher Data section, and if that publisher ID applies to this book, then there is no need for it to be repeated here.

PublisherName=Name of Publisher

This line is optional. If this book is not published by the publisher whose name and ID appears in the Publisher Data section, then it should have its own PublisherName line. If there is a PublisherName line in the Publisher Data section, and if that publisher name applies to this book, then there is no need for it to be repeated here.

BookID=STEP Book ID for this Book
Book ID numbers are assigned by the publisher and should be unique to each book published by that publisher. By assigning unique book numbers to every book (even if the publisher offers several CD’s offering different collections of books) it is possible to create links between books even if books are located on other CD’s.

Note that there is no connection between this book ID number and the number in the [Book n] line that marks the beginning of the description of this book. (See above.)

EditionID=Edition Number of this Book
Edition ID numbers are assigned by the publisher. The Edition ID can be used by Book Readers which, for one reason or another, depend on being able to find a certain edition of a particular book. Two books with the same Publisher ID and Book ID but with different Edition ID’s can be assumed to have a different section outline or viewable block structure. These differences could affect the applicability of supplementary files created by the Book Reader for the book. See page 17 for a complete discussion of editions.

SetID=STEP Set ID Number for this Book
This line is optional. It need be present only if this book is part of a set, such as a multi-volume encyclopedia or commentary.

Set ID numbers and Set Names are assigned by the publisher and should be unique and consistent across all books in the set. Both are optional. The Set ID number is used to tell the Book Reader that this book should be considered as part of the entire set. That is, it is a member of a series of books that should be treated as one book by the Book Reader. This feature is useful for commentaries and other similar collections. By assigning the same Set ID and Set Name to all of the books in the series, the Book Reader has the option of presenting those to the user as if they were all one book. This typically affects how verse synchronization and the user interface are handled. For example, the user would not have to open a commentary window for every book of the Bible visited while studying. The entire commentary series could share one window. (The exact details of how a Book Reader implements sets is up to the discretion of the Software Publisher. More information on sets can be found under SetID on page 9.)

Implicit in the design of the set concept is the requirement that all books in a set must have the same Publisher ID.

SyncType=Synchronization Type for this Book
The SyncType used in the book (if any) must be included in the appropriate Book Data section for the book. This permits the installation program to know what sync files to expect, and to store an appropriate sync type flag for the book without having to open BOOK.DAT.

Set Information

For every set identified as part of a [Book n] entry, additional information must be supplied in a Set Information section. This additional information consists of the set number and name, and the publisher number and name if needed. These entries start with a label as follows:

[Set Info n]

Note again that the numbers in the [Set Info n] lines are not connected to the SetID number. These lines serve only to demarcate the beginning of each set information entry. The first [Set Info n] label in each VOLUME.INI should be [Set Info 1], the second [Set Info 2], and so on.

SetName=Name of this Set

This is the name of the set of books as you want it to appear to the user in the Book Reader.

SetID=STEP Set Number of this Set
This is the ID number that is used in the [Book n] entry for every book in this set. See the description of set numbers, above.

PublisherName=Publisher’s Name
The publisher’s name for this set is only required if it differs from the name in the Publisher Data section of this VOLUME.INI file.

PubID=STEP Publisher ID Number
The publisher ID is only required if it differs from the STEP publisher’s ID in the Publisher Date section of this VOLUME.INI file.

Additional Information

A book publisher may include additional, “product specific” information in the VOLUME.INI file. For instance, a specific book reader may be able to use additional data provided about a particular book. It is permissible to include this information in the VOLUME.INI file. However, any extensions to the VOLUME.INI file may not be recognized by all STEP book readers.

Examples

Single Book

Single books are often shipped compressed on floppy disks and installed to the user’s hard drive. As part of that installation process, a VOLUME.INI file should be installed to an easily identified directory on the hard drive.

For example, assume we have a book called My Bible Dictionary from My Publishing Company. If the Book Reader is in the \STEP directory, the installer might put this book into a directory called \STEP\MYDICT. It could then place the following VOLUME.INI in the \STEP directory:

[Publisher Data]

DataSetName=My Bible Dictionary

PublisherName=My Publishing Company

PubID=100

[Book 1]

Name=My Bible Dictionary

Path=MYDICT

BookID=1

EditionID=1

SyncType=Word

Note that we don’t need PublisherName or PublisherID in the Book Data section because it’s already in Publisher Data. Since this is a single-volume dictionary there is no SetID or Set Info section.

Collection of Books

Multiple books from one publisher are usually shipped on a CD-ROM. VOLUME.INI is in the root directory. The Book Reader need only be “pointed to” the VOLUME.INI and it can register the books for use.

The following collection consists of a multi-volume commentary series and a single-volume dictionary. The books are in subdirectories of the CD root directory.

[Publisher Data]

DataSetName=My Bible Reference Collection

PublisherName=My Publishing Company

PubID=100

[Book 1]

Name=Books of Moses

Path=\MOSES

BookID=21

EditionID=1

SetID=10

SyncType=Verse

[Book 2]

Name=Books of History

Path=\HISTORY

BookID=22

EditionID=1

SetID=10

SyncType=Verse

[Book 3]

Name=Books of Poetry

Path=\POETRY

BookID=23

EditionID=1

SetID=10

SyncType=Verse

[Book 4]

Name=Major Prophets

Path=\MAJOR

BookID=24

EditionID=1

SetID=10

SyncType=Verse

[Book 5]

Name=Minor Prophets

Path=\MINOR

BookID=25

EditionID=1

SetID=10

SyncType=Verse

[Book 6]

Name=My Bible Dictionary

Path=\MYDICT

BookID=1

EditionID=1

SyncType=Word

[Set Info 1]

SetName=My Bible Commentary
SetID=10

The example above contains an Old Testament Commentary series. If this company later releases their New Testament commentaries on another CD, they can add volumes to the commentary set by using the same SetID. Note that the BookID’s don’t have to be sequential; they should be greater than the highest BookID in the Old Testament series so that they will come after the Old Testament books in the set.

For illustrative purposes, the following collection will contain the New Testament commentaries described above, plus another related book from a different publisher:

[Publisher Data]

DataSetName=My New Testament Commentaries

PublisherName=My Publishing Company

PubID=100

[Book 1]

Name=Gospels

Path=\GOSPELS

BookID=31

EditionID=1

SetID=10

SyncType=Verse

[Book 2]

Name=NT History

Path=\NTHIST

BookID=32

EditionID=1

SetID=10

SyncType=Verse

[Book 3]

Name=Epistles

Path=\EPISTLES

BookID=33

EditionID=1

SetID=10

SyncType=Verse

[Book 4]

Name=Revelation

Path=\REV

BookID=34

EditionID=1

SetID=10

SyncType=Verse

[Book 5]

Name=New Testament Culture

Path=\CULTURE

PubID=213

PublisherName=Your Publishing Company
BookID=33

EditionID=2

[Set Info 1]

SetName=My Bible Commentary
SetID=10

Note that the New Testament Culture book has the same BookID as the Epistles book. This is not a conflict, since the books are from different publishers. Also note that the Set Information for the My Bible Commentary set does not need to repeat the publisher information because it’s the same as the Publisher Data section (there is no confusion caused by the fact that the New Testament Culture book is from another publisher).

Third-Party Publisher

The following collection of books is from a variety of publishers. The collection is published on behalf of each of the book publishers by a software publisher.

The software publisher has received a STEP Publisher ID for each of the different print publishers whose books he publishes. This makes it easier for him to track royalty payments to the book publishers. It does not keep the book publishers themselves from later publishing STEP books under a different Publisher ID, nor does it prevent another third-party publisher from also licensing titles from this book publisher and selling them under yet-another Publisher ID.

The software publisher maintains his own STEP Publisher ID for any public domain titles he publishes. Since the collection is from a variety of publishers, he chooses to use his company name as the Publisher in the Publisher Data section.

[Publisher Data]

DataSetName=The Big Book Collection

PublisherName=My Software Company

PubID=399

[Book 1]

Name=Smith’s Encyclopedia of the Bible

Path=\SMITH

PubID=240

PublisherName=Smith Bible Publishers
BookID=3

EditionID=1

SyncType=Word

[Book 2]

Name=Brown’s O.T. Commentary

Path=\BROWNOT

PubID=115

PublisherName=Brown & Company
BookID=1

EditionID=1

SetID=1

SyncType=Verse

[Book 3]

Name=Brown’s N.T. Commentary

Path=\BROWNNT

PubID=115

PublisherName=Brown & Company
BookID=2

EditionID=1

SetID=1

SyncType=Verse

[Book 4]

Name=Plants of the Bible

Path=\PLANTS

PubID=267

PublisherName=Green Leaf Publishing
BookID=12

EditionID=1

SyncType=Word

[Book 5]

Name=My Utmost for his Highest

Path=\UTMOST

BookID=99

EditionID=1

SyncType=Date

[Book 6]

Name=Easton’s Bible Dictionary

Path=\EASTON

BookID=97

EditionID=1

SyncType=Word

[Book 7]

Name=Smith’s O.T. Commentary

Path=\SMITHOT

PubID=240

PublisherName=Smith Bible Publishers
BookID=55

EditionID=1

SetID=1

SyncType=Verse

[Book 1]

Name=Smith’s N.T. Commentary

Path=\SMITHNT

PubID=240

PublisherName=Smith Bible Publishers
BookID=56

EditionID=1

SetID=1

SyncType=Verse

[Set Info 1]

SetName=Brown’s Commentary
SetID=1

PubID=115

PublisherName=Brown & Company

[Set Info 2]

SetName=Smith’s Commentary
SetID=1

PubID=240

PublisherName=Smith Bible Publishers

Note that [Book 5] and [Book 6] are public domain books. Since they don’t specify a Publisher Name or PubID, they are assumed to be from the same publisher as is named in the Publisher Data section.

Note that the two sets are both “SetID=1.” This is not a problem because the PubID of each is different.

Bible References in STEP Books

Bible Verse Parser

Any Bible references in a book will be automatically converted into links to the cited Bible verse. For the most part, the STEP Conversion Program will be able to determine the correct target verse from the context of the reference. In order to make this possible, certain conventions should be followed. This section describes how the Bible reference parser in the Conversion Program recognizes Bible verses.

Recognized Books

The following is a list of books that the parser recognizes. The number in parenthesis behind the book is the number of characters that must be present before that particular book will be recognized by the parser. For example, you want a reference to Genesis 1:1. Since Genesis has a 2 in parenthesis, 2 characters of “Genesis” are needed before the parser knows that Genesis is the book you are referring to. This reference can then be given as Ge 1:1, Gen 1:1, Gene 1:1, … , or Genesis 1:1. In addition, books are followed by any other acceptable abbreviations of that book that eliminates characters from its usual spelling. The numbers in parenthesis behind these abbreviations mean the same as above.

Old Testament Books

Genesis (2)

Gn

Exodus (2)

Leviticus (3)

Lv

Numbers (2)

Deuteronomy (2)

Dt

Joshua (3)

Judges (4)

Jdg

Ruth (2)

First Samuel (9)

1 Samuel (4)

1Sa

Second Samuel (10)

2 Samuel (4)

2Sa

First Kings (8)

1 Kings (4)

1Ki

Second Kings (9)

2 Kings (4)

2Ki

First Chronicles (9)

1 Chronicles (4)

1Ch

Second Chronicles (10)

2 Chronicles (4)

2Ch

Ezra (3)

Nehemiah (2)

Esther (2)

Job (3)

Psalms (2)

Pss

Proverbs (2)

Ecclesiastes (2)

Song of Solomon (4)

Song of Songs (4)

Sol

SS

Canticles

Isaiah (3)

Jeremiah (2)

Lamentations (2)

Ezekiel (3)

Daniel (2)

Hosea (2)

Joel (3)

Amos (2)

Obadiah (2)

Jonah (3)

Jnh

Micah (2)

Nahum (2)

Habakkuk (3)

Zephaniah (3)

Haggai (3)

Zechariah (3)

Malachi (3)

New Testament Books

Matthew (3)

Mt

Mark (3)

Mk

Luke (2)

Lk

John (3)

Jn

Acts (2)

Romans (2)

Rm

First Corinthians (9)

1 Corinthians (4)

1Co

Second Corinthians (10)

2 Corinthians (4)

2Co

Galatians (2)

Ephesians (2)

Philippians (4)

Phl

Php

But not Philip
Colossians (3)

First Thessalonians (10)

1 Thessalonians (4)

1Th

Second Thessalonians (11)

2 Thessalonians (4)

2Th

First Timothy (8)

1 Timothy (4)

1Ti

Second Timothy (9)

2 Timothy (4)

2Ti

Titus (3)

Philemon (5)

Phlm

Phm

Hebrews (3)

James (2)

Jas

Jms

First Peter (11)

1 Peter (4)

1Pe

Second Peter (12)

2 Peter (4)

2Pe

First John (10)

1 John (5)

1 Jn (3)

1Jn

Second John (11)

2 John (5)

2 Jn (3)

2Jn

Third John (10)

3 John (5)

3 Jn (3)

3Jn

Jude (4)

Revelation (3)

Apocryphal and Pseudepigraphal Books
Psalm 151

1 Esdras

2 Esdras

Judith

Additions to Esther

AddEsther (6)

Add Esther (7)

The Wisdom of Solomon (3*)

* 3 characters starting with “Wis…”

But not “Wisdom” or “Wisdom of”
Ecclesiasticus

Sirach

Baruch

A Letter of Jeremiah

LetJeremiah (6)

Let Jerermiah (7)

The Song of the Three Children

Azariah

Susanna

Bel and the Dragon

The Prayer of Manasseh

Manasseh

1 Maccabees (6)

2 Maccabees (6)

3 Maccabees (6)

4 Maccabees (6)

Tobit

Other Words and Abbreviations Recognized

The parser also recognizes a number of other words or abbreviations that might be used in specifying Bible references.

Chapter Abbreviations

chapters

chapter

chaps.

chaps

chap.

chap

chs.

chs

ch.

ch
Verse Abbreviations

verses

verse

vss.

vss

vs.

vv.

vs

vv

v.

v

Ranges and Listing Abbreviations

, and

,and

and

through

thru
Bible Reference Specification

Separators: The colon (:) is the only chapter/verse separator recognized.

The parser will accept a number of different Bible reference formats. Here is a list of the recognized Bible reference patterns along with an example of each.

1. BookName ChapterNumber : VerseNumber

Example: Genesis 1:1

2. BookName VerseNumber

Acceptable for books with one chapter only!

Example: Jude 3

3. ChapterKeyword ChapterNumber

Example: ch. 2

4. ChapterKeyword ChapterNumber : VerseNumber

Example: chapter 4:5

5. VerseKeyword ChapterNumber : VerseNumber

Example: vv. 3:1

6. VerseKeyword VerseNumber

Example: v. 10

Context

Not all Bible references in a book are fully specified. For example, you may have a sentence such as “In Revelation, we read about … in verse 3:1.” It’s clear that “3:1” is a Bible reference, but no book name is included. The reference parser in the Conversion Program uses the closest preceding book name for this reference. In this case, Revelation is assumed to be the book the author intended “3:1” to be associated with.

Parenthesis affect context. If a chapter:verse reference occurs within parenthesis occurs without a book name within parenthesis, the book context preceding the parenthesis is assumed. If a book name occurs within parenthesis, the context from before the parenthesis is restored following the parenthesis. Consider this example: “Matthew describes the birth of Christ (1:18-25, see also Luke 2) and includes a visit by ‘magi from the east’ (2:1)….” In this example, “1:18:25” picks up the context of “Matthew” which precedes the parenthesis; “2” is interpreted in the obvious context of “Luke” that immediately precedes it; and “2:1” is considered to be in Matthew because the reference to Luke (though closer in context) is contained in parenthesis.

Words to Watch Out For

Problem words include the names of the apostles, “revelation,” “exodus,” “numbers,” and other words that could be either a book name or used in some other context. These words may cause an unintentional change in Bible context and can cause subsequent references to link improperly. For example, in a commentary on the book of Revelation the sentence “John hears a voice (1:10)…” will create a link to John 1:10 instead of Revelation 1:10 as intended. To fix this problem, use {\SetBibleContext:Revelation} after “John” and before “1:10” in this sentence.

The word “the” when preceded by a “1” or “2” looks like an abbreviation for “1 Thessalonians.”

Typographical Errors

Carefully check the punctuation, letters and numbers in a Bible reference that does not link properly. “Job. 1:2” will not link because of the period after Job. “John 1;2” does not link because of the semicolon. “Genesis l:2” does not link because the “one” in “l:2” is actually a lower case “L”. There is a similar error in “Genesis lO:l” in which all the digits are actually letters (lower case “L” for “one” and upper case “o” for “zero”).

Problems with Numbers

Use {\BibleLinksOff} and {\BibleLinksOn} around sections of text containing numbers that might confuse the Conversion Program. For example, “3:30 in the afternoon” will generate a link to chapter three, verse thirty of whatever book name occurred closest in context to “3:30.”

Some citation conventions cause problems. For example, “Matthew 5:4f., 21ff.” will not link correctly. The “5:4” works, but the “21” is not linked because the “f.” which precedes it does not look like a book name. Use {\LinkToBible} to fix this problem.

Recognized Translations

The parser recognizes a number of Bible Translations. The following table contains the abbreviations that must be used for a particular translation. Those marked with an asterisk are not actually supported in the current version of STEP but are being added to an upcoming version.

Translation
Abbreviation

King James Version
KJV

New KJV
NKJV

New International Version
NIV

Revise Standard Version
RSV

New RSV
NRSV

New Century Version
NCV

The Living Bible
TLB

American Standard Version
ASV

New American Standard Bible
NASB

Revised English Bible *
REB

New English Bible *
NEB

New American Bible
NAB

Today's English Version *
TEV

Jerusalem Bible *
JB

Young’s Literal Translation *
YLT

Darby’s New Translation *
DNT

God’s Word Translation *
GWT

New Living Translation *
NLT

Greek New Testament *
GNT

International Children’s Bible
ICB

Examples of Use

The format of a reference containing a translation keyword affects the way in which the parser perceives that Bible reference. Here are some examples of references containing a translation keyword and an explanation of how each reference would link.

A. Psalm 1 KJV, NAB

Text Selected
Links to

Psalm 1
Psalm 1 (KJV)

KJV
Psalm 1 (KJV)

NAB
Psalm 1 (NAB)

B. Genesis 1, 3 KJV, NIV

Text Selected
Links to

Genesis 1
Genesis 1 (The active translation)

3
Genesis 3 (KJV)

KJV
Genesis 3 (KJV)

NIV
Genesis 3 (NIV)
C. Acts 1 (TLB, ASV)

Text Selected
Links to

Acts 1
Acts 1 (TLB)

TLB
Acts 1 (TLB)

ASV
Acts 1 (ASV)

Disregarded Text

Ignored Words

Human readers generally have no difficulty distinguishing between the word “Hebrew” when used to describe a person and the same word used in a Bible verse citation. The Conversion Program, however, is not able to recognize the contextual clues to distinguish these uses. For this reason, the Conversion Program ignores the following words and phrases for the purpose of determining context.

the Hebrews

Hebrew

Philippian

Roman

the Exodus

John the Baptist

John the Baptiser

Philip

Levi

Judge

Psalm 151:

Psalm 151

Number

act

prove

ff.

cf.

In addition, the use of names such as John, Mark, and Peter can cause the context of a reference to be erroneously linked to the wrong chapter. The user must watch for these and use a full reference —BookName ChapterNumber:VerseNumber — or {\SetBibleContext…} if such a linking error occurs.

Distribution Disk Layout

Volume Label

A specific volume label format is not required by STEP, but it may prove to be convenient if each CD produced by a publisher had a unique label. One method of making sure that volume labels are unique across all STEP publishers is to format them as follows:
· The first 4 characters of the volume label must be the unique Publisher ID (assigned by the STEP administrator) with leading zeros.
· Remaining 7 bytes must provide a unique Product ID and are assigned by the publisher.
Root Directory

The root directory must include the VOLUME.INI file as described above, and may also include:

· Book reader executable, if one is included

· Program to install book reader software (if included)

Subdirectories

· Each book’s data set must be placed in a unique subdirectory (specified in the VOLUME.INI file). Books should not be contained directly in the root directory. They may be nested under multiple subdirectories. For example, the book SAMPLE may be included in any of the following subdirectories:

\SAMPLE

\STEP\SAMPLE

\STEP\BOOKS\SAMPLE

Miscellaneous

· If the product requires special fonts to be installed, the documentation provided with the product should describe the installation of the fonts separately from the installation of the books themselves. This is necessary in case the publisher’s installation program (if any) is not used and the STEP book(s) is (are) being accessed by a different Book Reader than ships with the book(s).

END OF STEP PUBLISHING SPECIFICATION

STEP Programming Specification

Version 1.1

This document contains information pertinent to software publishers wishing to create STEP-compatible book readers. Content providers interested in publishing using STEP should refer to the STEP Publishing Specification.

Creating a Book Reader

There are three programming issues directly related to creating a STEP Book Reader: Reading the STEP data files, displaying RTF data, and displaying Unicode data.

Reading the STEP data files is relatively straightforward. The file layouts are given below. A “Programmers Toolkit” is available from the STEP Administrator that provides an object-oriented wrapper around the STEP data files. In the event that you are implementing your Book Reader in a language or on a platform incompatible with this toolkit, the information in this specification will help you implement a similar capability in your own program.

Displaying RTF is a complex task. Again, the STEP Administrator can provide an RTF control for Windows that may help you through this problem. If you have to implement your own, look for the many RTF tools that are available with source code. You’ll need the source to add the few STEP-specific extensions to RTF that are described in the BOOK.DAT section below.

We have not attempted to document every RTF command that is implemented in the original STEP Conversion Program developed by Parsons Technology and in the RTF control that is in the STEP Programmers Toolkit. If you need detailed information about what RTF commands need to be implemented in your reader, contact Parsons or the STEP Administrator.

Displaying Unicode text is a challenge. The STEP design leaves it up to the book reader to provide fonts for every supported language. Unicode support is a part of the Programmers Toolkit. Implementing your own Unicode support is not a simple task. But on the other hand, full language support is essential to a usable Bible study system, so the issue can not be avoided.

Due to the complexity of displaying RTF code and correctly handling non-English languages, the STEP Programmers Toolkit is highly recommended. This toolkit provides standardized file access, RTF rendering, and non-English input and sorting methods.

(Remember that STEP is a cooperative program between a number of companies. If you develop some general-purpose tools for developing STEP-compatible applications, you should consider making them available to other BSISG members. This can be done at a price, of course, but keeping the terms of such agreements reasonable helps spread STEP and increases the amount of content available for your customers.)

Conversion Program-Generated Files

The Conversion Program uses the set of files created by the Book Publisher and generates the following files.

The term “Entry” or “Record” used below implies there is one instance of this collection of data in the file. The term “List” indicates that this portion of the file consists of a repeated sequence of the collection of data being described.

The term “Index” means this value (say, n) should be interpreted as referring to the nth item in a list (or array) of values. If a value is stored as an “Index” then to find the item referred to, one must multiply the value by the size of each item and use the result as an offset from the beginning of the list to find the item.

The term “Pointer” or “Offset” means this value should be interpreted as a “file pointer” (aka “file offset”). In other words, the number of bytes from the beginning of the file to the first byte of the sought-after data item. To find the item referred to by a “Pointer” (say, n), one should “seek” to the nth byte in the file and read the item at that location.

BOOK.DAT

This is essentially a compressed RTF file which contains the text of the book as generated by the Book Publisher plus a few new RTF commands generated either from the control words supplied by the Book Publisher or automatically, as generated by the Conversion Program. The following describes the contents of BOOK.DAT. See Appendix A for a description of the algorithm used to compress the RTF text contained within BOOK.DAT.

The book contents are preceded by a Version Record and the contents of the Header Control Words. The rest of the file consists of “viewable blocks” compressed using the compression method specified in VIEWABLE.IDX and described in Appendix A.

Version Record

The Version Record is identical to that in SECTIONS.IDX (see page 37).

Header Control Word Area

The values of the Header Control Words are stored, preceded by the length of this area. All RTF formatting information is removed from the Header Control Word values before they are stored. Hard returns are preserved. Otherwise, the STEP commands (including the brace and backslash preceding the control word) are exactly as they appear in the book.

Record Contents

· Length of the following region of the file, four bytes

· Uncompressed representation of the Header Control Word commands from the book

Block Zero

Viewable block zero contains any document-level RTF commands necessary to form the proper context for the subsequent blocks. To read any viewable block of text from BOOK.DAT, it must be concatenated to the contents of this block. See also VIEWABLE.IDX.

Book Data

The contents of the book are compressed, one viewable block at a time. They are stored sequentially here and are pointed to by the pointers in VIEWABLE.IDX.

Link and LinkTo

The Document Control Words that will be in this file include Link and LinkTo... Each Link control word is replaced with the RTF control word \steplink. The LinkTo control word is replaced with the RTF control word {*\steplinkto# argument}, where # and argument are as follows:

Type of Link
#
argument

Level
0
Index into SECTIONS.IDX

Glossary
1
Index into SECTIONS.IDX

Multimedia
2
Filename and title from LinkToMM

Book
3
Book ID, Publisher ID, book name and section from LinkToBook

Bible
4
Book# Ch#:Vs# [-Book# Ch#:Vs#][Translation#]

In the case of LinkToLevel and LinkToGlossary, the values are represented as 10-digit, zero-padded, base-10, ASCII representations of the value.

For LinkToBible, Book# is an integer representation of the book number as described on page 50. Ch# and Vs# are the chapter and verse numbers, respectively. If a second Book# Ch#:Vs# reference is cited, then the link is referencing the passage which begins at the first and ends at the second reference. If the original LinkToBible statement refers to an entire chapter or an entire book, the range of verses are given in the RTF file (so, for example, Genesis 1 becomes 1 1:1-1 1:31).

If a particular translation is specified, its number is given here. Translation numbers are found on page 53.

ConcordanceOff and ConcordanceOn

ConcordanceOff and ConcordanceOn are translated to RTF in BOOK.DAT. ConcordanceOff becomes \stepconcordanceoff. There will always be a space after this RTF command. ConcordanceOn becomes {*\stepconcordanceon [argument]} where the argument is (as in the ConcordanceOn control word) optional.

Level Control Words

The STEP Leveln commands are translated into RTF in BOOK.DAT. Each becomes \stepstartlevel# where the number (#) is the relative count from the first \stepstartlevel in each viewable block. The first one is \stepstartlevel0, the second \stepstartlevel1, etc. Note that this count is not related to the “level number” in the {\Leveln} control word, but rather simply indicates which Leveln control word this \stepstartlevel RTF command corresponds to. There will always be a space after this RTF command.

Language Issues

The language issues related to book.dat are not that complex. Any book that has at least one non-English language stores the RTF in a format called UTF-8. UTF-8 is a way to store 2 byte Unicode values in a way that is generally more compact for most books. It uses 1, 2, or 3 bytes to store a Unicode value, depending on what that value is. Values less that 128, for example, only use 1 byte, thus saving space in the most common case.

The {\Language:} keyword is translated into the RTF keyword \lang#, where # is a number from the list of STEP language ID’s. Below is a table of the current numbers for the language listed in the {\Language:} keyword description.

Language
Language #

English
0x0409

Greek
0x0217

Hebrew
0x000d

TransAramaic
0x8201

TransGreek
0x8217

TransHebrew
0x800d

TransOther
0x824c

Latin
0x0227

French
0x000c

German
0x0007

Spanish
0x000a

SECTIONS.IDX

The Conversion Program creates this index file to permit Book Readers to perform two functions: First, to display an outline view of the book, and second, to enable LinkToBook commands to locate sections by name.

The sections index file consists of four parts: First is the Version Record, which contains the Conversion Program version number and other information relating to the book as a whole. Second, a Header Record containing general information about the index. Third, a list of fixed-length records representing each Leveln command in the book. Fourth, a list of variable length records containing the names of each level.

Version Record

The Publisher ID, Book ID, Set ID and version number of the Conversion Program is stored. Publisher ID, Book ID and Set ID allow the Book Reader to verify that the file “belongs” to the book in BOOK.DAT. The Conversion Program version is stored as major and minor version numbers. Therefore, version 1.2 would be stored as the value of 1 in the first byte and 2 in the second. The remaining bytes are set to zero and are not used at this time. The Conversion Program version number is the same as the version number of the STEP specification that the Conversion Program implements.

The Least Compatible STEP Version is the minimum version of the STEP specification that a Book Reader needs to know about in order to read this book. This allows future books (which may be stored in a slightly different format) to communicate with old Book Readers to let them know that they should not attempt to read this file. Needless to say, future versions of STEP will remain backwards compatible as long as possible.

Encryption type is an integer indicating which encryption method was used in the creation of this book. This value is zero for non-encrypted STEP books. When this value is non-zero, a STEP Book Reader that does not have the capability to understand encrypted STEP formats should not try to read or interpret any other information from the STEP files, as their format is similar but not entirely the same as stated in this specification. Encrypted STEP formats are defined separately. Further information is available from the STEP Administrator. (See also Appendix E.)

The EditionID is a single byte integer value indicating the edition number of the electronic book. A value of zero should be interpreted in the same way that a Book Reader interprets a value of one, since this field was added in version 0.91 and all books produced before 0.91 contained a zero in this field.

The Modified By field allows a Book or Software Publisher to extend the STEP files by writing publisher-specific data into “unused” areas (by extending lengths of fixed-length records or using reserved bytes). Since several publishers may extend the files in different ways, this field can be examined to determine whose extensions are being implemented. A value of zero indicates that no extensions are present in the file. Any extensions implemented by a publisher should be done in such a way as to assure that a Book Reader that is ignorant of the extensions can still read the book.

Record Contents

· Size of Version Record (including these two bytes), two bytes

· Publisher ID, two bytes

· Book ID, two bytes

· Set ID, two bytes (value of zero if not in a set)

· Conversion Program, Major Version Number, one byte

· Conversion Program, Minor Version Number, one byte

· Least Compatible STEP Version, Major Version Number, one byte

· Least Compatible STEP Version, Minor Version Number, one byte

· Encryption Type, one byte

· EditionID, one byte

· Modified By (Publisher’s ID), two bytes

Header Record

Contains general information regarding the sections index.

Record Contents

· Size of Header Record, two bytes

· Number of non-glossary entries in the Level Entries list, four bytes

· Number of Glossary Entries, four bytes

· Level Entry size, two bytes

· Reserved, four bytes

Level Entries

There is an entry here for each of the Leveln commands in the book. These are fixed length records, which appear in this list in the same order that they appear in the book. (Note: “level” and “section” are often used to describe the same data. One viewable block of text in the BOOK.DAT file contains one or more levels (or sections). The book reader may use these level names to create a table of contents for the book.)

Each entry contains pointers to the previous and next entry at its level within the containing higher level of the hierarchy. That is, all the level 1 entries are linked together (previous of the first is 0, next of the last is 0); all of the level 2 entries within each level 1 are linked together (again, previous of the first is 0 and next of the last is 0), etc. The last level 2 entry is not linked to the first level 2 entry under the next level 1.

Furthermore, each entry at level n points back to the level n-1 entry containing it. This entry is referred to as its “parent.”

Glossary sections are entered similarly to regular sections. However, most of the information in the Level Entry for a glossary section is not important. The description of the Level Entry below gives the value of each data item for a glossary entry. Glossary entries occur after all “regular” level entries. That is, a book is composed of one or more levels followed by zero or more glossary sections.

In order to display text for a given level (that is, a section), first locate the viewable block that contains that level. Use the index into VIEWABLE.IDX from the level entry structure (detailed below) as an offset into VIEWABLE.IDX. From that position in VIEWABLE.IDX, read the pointer into the BOOK.DAT file. This is the file address of the beginning of the viewable block. Read that block of text looking for the beginning of the nth Level command in the block, where n is the level count in the entry below. The beginning of each Level section is indicated by the RTF command StepStartLevel# in BOOK.DAT.

The Outgoing Synchronization Information is used to allow a book to drive other books to which it might be synchronized. For example, a commentary might scroll to a section on John 3:16 when it receives a sync command from a Bible. But if the commentary is subsequently scrolled to the next section (John 3:17) it needs to be able to send back a sync message to the Bible to cause it to maintain correspondence to the commentary. Information regarding the arguments of the first SyncTo control word in the section is stored here. The details are as follows:

Sync Type
2 bytes
2 bytes
2 bytes

Verse
Book number
Chapter number
Verse number

Word
Pointer to spelling in xSYNC.IDX

Reserved

None
Zero
Zero
Zero

Record Contents

· Pointer to the parent of this entry (level n-1 entry containing this one) or zero if this is a glossary entry, four bytes

· Pointer to previous entry at this level or zero if glossary, four bytes

· Pointer to next entry at this level or zero if glossary, four bytes

· Index into VIEWABLE.IDX indicating the viewable block in which text for this level or glossary entry is stored, four bytes

· Counter indicating which Level command within the viewable block corresponds to the desired text (zero if glossary), two bytes

· Level number or zero if glossary, one byte

· Pointer to name of this section, four bytes

· Outgoing synchronization information, six bytes

Name Entries

The names of each section follow immediately one after the other. Each is preceded by a two-byte length field, followed by that many bytes of characters. This buffer is accessed through the pointers contained in the Level Entries. No assumptions should be made about the order of the character strings in this buffer area.

Record Contents

· Length (number of characters to follow), two bytes

· Name from Leveln command

CONCORD.IDX

The Concordance Index permits the Book Reader to perform full-text searching of the book. For each word in the book, this file stores an index into the Level Entries in SECTIONS.IDX representing a section in which the word occurs and a word count to indicate the position of the word within the section. The index can be multiplied by the size of the Level Entries to determine a file offset for retrieving the entry. From there, the name of the section can be retrieved, as can the names of the enclosing levels of the hierarchy. This information can be used to construct a “search results” list. Furthermore, the offset into BOOK.DAT can be retrieved from the Level Entry to find the section of text containing the word.

For simple word searches, it is not necessary to read the text of the book. The Book Reader can simply display the full section name containing the word. Optionally, the Book Reader could read the book text to put the word in context.

Since the position of the word within the section is also stored, phrase searches can also be performed without referring to the text of the book. The term “word position” is used to describe the order and placement of the words within a section. That is, the first word in the section is in word position 1, the second is in word position 2, etc. The word positions are counted from the beginning of the section, not the viewable block. It is possible for more than one word to occupy a single word position. For instance, using the ConcordanceOther control word can cause two different words (or spellings of the same word) to occupy the same word position. This allows the book reader to evaluate searches based not upon word spelling, but upon word position. Further, there can be “holes” in the word positions. For instance, the ConcordanceOff control word can eliminate a word from the concordance and cause its word position to be skipped.

A book that contains words in more than one language actually contains several concordances; one for each language used in the book. The encoding of words in each language varies depending on the language in question. English-language words will be encoded as standard ASCII, with all words stored in lower case. Hyphenated words are treated as one word both in the concordance and in calculating word position. Word positions are independent of language; a Greek word occurring between two English words will have a word position falling between the word positions of the two English words. Hence, the Book Reader can implement fast mixed-language phrase searching if desired.

Because of the way the concordance is constructed, it imposes a limit of 65535 words per section. The Conversion Program will verify that no section in a book exceeds this limit.

Encoding of non-English languages is in Unicode™. This simply means that the spellings use 2 byte characters rather than single byte characters in the file format below, so the code to read the spelling needs to change depending on the language of the spelling.

Beginning with version 1.1 of STEP, the CONCORD.IDX file may be further compressed in order to reduce space required. See Appendix B for a description of the algorithm used. The following sections contain some additional, brief comments on the implementation of the compression algorithm.

Version Record

The Version Record is identical to that in SECTIONS.IDX (see page 37).

Header Record

Contains general information about the contents of the concordance. The Compression Flag is valid for STEP version 1.1 and newer books. A 1 in this field indicates that the concordance file is compressed. For STEP versions prior to version 1.1, this byte is reserved.

Record Contents

· Size of Header Record, two bytes

· Number of languages used in book; is also the number of entries in the Language List, two bytes

· Size of Language List entries, two bytes

· Compression Flag, one byte (for version 1.1 or higher; for versions prior to 1.1, this byte is reserved and should be ignored)

· Reserved, one byte

Compression Header

The compression header exists only if the compression flag is non-zero in the header record. Count of Levels is needed for decompressing the file. It represents the number of bits (N) in the bitstream compression algorithm.

Record Contents

· Count of Levels in the book, four bytes

Language List

Pointers to the concordances for words in each of the languages contained in the book.

The Language Tag for each entry is one of the languages from the table included in the BOOK.DAT description.

Maximum Word Position for this Language is required when concordance compression is used. It is needed for decompressing the concordance file, and represents the number of bits N for the bitstream of word positions. When concordance compression is not used, these bytes are reserved.

Record Contents

· Language Tag, indicates the language, two bytes

· Number of words in Word List for this language, four bytes

· Pointer to Word List for this language, four bytes

· Size of Word List entries, two bytes

· Maximum Word Position for this Language, two bytes

· Reserved, two bytes

Word List

List of entries for each word in the concordance in alphabetical order. Alphabetical order is defined for each of the supported languages in Appendix F. The contents of the Word List vary depending upon whether the concordance is compressed.

Record Contents for Uncompressed Concordance

· Total number of occurrences of this word in entire book, four bytes

· Number of four-byte section numbers in Concordance Entry, four bytes

· Pointer to a Concordance Entry, four bytes

· Number of two-byte section numbers in Concordance Entry, two bytes

· Pointer to Word Positions List, four bytes

Record Contents for Compressed Concordance

· Total number of occurrences of this word in entire book, four bytes

· Total number of section numbers in the compressed bitstream, four bytes

· Pointer to a Concordance Entry, four bytes

· Pointer to Word Positions List, four bytes

Concordance Entry

Each entry corresponds to one word. Records are of variable length. No assumptions should be made about the order of the entries in this area of the file.

This record contains a list of section numbers in which the word occurs. The list is stored in two parts: A list of two-byte section numbers and a list of four-byte section numbers. Since most books will have less than 65536 sections, this optimization results in substantial savings in the size of the concordance, while still allowing for books with more than 65536 sections. Both of these lists can be assumed to be stored in ascending order. The number of entries in each list is stored in the Word List record, above.

The contents of this record is different depending upon whether the concordance is compressed.

Record Contents for Uncompressed Concordance

· Length (number of characters to follow) of word, two bytes

· Spelling of the word, length varies (1 byte per character for English, 2 bytes per character for non-English)

· List of indexes into Level Entries in SECTIONS.IDX for section numbers less than 65536, two bytes each, variable number of entries

· List of indexes into Level Entries in SECTIONS.IDX for section numbers greater than or equal to 65536, four bytes each, variable number of entries

The record contents for compressed concordances are listed below. Use the Count of Levels from the Compression Header for N in the algorithm, and the Total Number of Section Numbers from the Compressed Word List record as p in the algorithm to decompress the buffer. Note that since the first number could be 0 and the algorithm can’t encode a zero, the first decompressed number actually is one more the the value and you need to subtract 1 to get the original value back.

Record Contents for Compressed Concordance

· Length (number of characters to follow) of word, two bytes

· Spelling of the word, length varies (1 byte per character for English, 2 bytes per character for non-English)

· Compressed bits for the section numbers

Word Positions List

The contents of the Word Positions List varies depending upon whether the concordance is compressed.

For uncompressed concordance files, this is a list of pointers to Position Number Lists. For each section index in the Concordance Entry for this word, this list contains a corresponding pointer to a Position Number List. Entries in this list are in the same order as the combined two-byte and four-byte lists above. That is, if section 458 is the 101st entry in the two-byte section number list, then its corresponding pointer is the 101st entry in the Word Positions List. If there are 150 two-byte sections and section 75,510 is the 10th item in the four-byte section number list, then the corresponding pointer for section 75,510 is the 160th entry in the Word Positions List.

Record Contents for Uncompressed Concordance

· List of pointers to Position Number Lists, four bytes

For compressed concordance files, the compressed Word Positions List represents the pointers as a bitstream. The number of pointers (p in the algorithm) is the same as the Total number of section numbers in the Section List. This section contains the following information (this example shows writing the concordance entries as the conversion program would do; rules for interpreting the information when reading the data can be derived from the rules for writing the data):

· If the number of sections is greater than one, write the value derived from the last pointer in the list minus the first pointer. The pointers are assumed to be in strictly ascending order.

· Next write the first pointer from the list.

· Finally, write the remaining N - 2 pointers in compressed form.

So, if you start with a list P1 P2 … PN-1 PN, the compressed list would look like this:

PN - P1
P1
P2-P1 in compressed form

…

PN-1 - PN-2 in compressed form

Position Number List

This list stores the positions at which this word occurs in a particular section. Word positions are relative to the start of the section.

For uncompressed concordance files, for optimization purposes, the list is stored in two parts: Word positions less than 256 are stored in one byte, and word positions greater than or equal to 256 are stored in two bytes. The first two entries here store the number of one and two byte values that follow. These two can be summed to determine the total number of occurrences in this section.

Record Contents for Uncompressed Concordance

· Number of one-byte word positions (length of one-byte list that follows), one byte

· Number of two-byte word positions (length of two-byte list that follows), two bytes

· List of one-byte positions, one byte each, length varies

· List of two-byte positions, two bytes each, length varies

Record contents for the compressed concordance are listed below. Use the Max Word Position from the Language List record for N in the algorithm, and the Total Number of Word Positions from this structure for p in the algorthim to decompress the buffer. Note that since the first number could be 0 and the algorithm can’t encode a zero, the first decompressed number actually is one more the the value and you need to subtract 1 to get the original value back

Record Contents for Compressed Concordance

· The total number of word positions, two bytes

· Compressed bits for the word positions

VERSES.IDX

The Verses Index permits the Book Reader to determine where a particular Bible verse is referenced in the book. For each Bible verse reference in the book, this index stores an index into the Level Entries in SECTIONS.IDX representing a section in which a reference to the verse occurs. The index can be multiplied by the size of the Level Entries to determine a file offset for retrieving the entry. From there, the name can be retrieved, as can the names of the enclosing levels of the hierarchy. This information can be used to construct a “search results” list. Furthermore, the offset into BOOK.DAT can be retrieved from the Level Entry to find the section of text containing a reference to the verse.

Following the Version and Header Records, there are four sections of this file. The first three (Book, Chapter and Verse Entries, respectively) identify which verses are referenced in the book. The last section contains lists of sections in which particular books, chapters or verses are mentioned. The last section is never accessed directly; its contents are only useful when reached through a pointer in one of the previous three sections.

It is easiest to understand this index by looking first at the Verse Entries. An entry in this list indicates that the particular verse to which this entry pertains is mentioned in the sections listed in the Occurrence Entry for this Verse Entry. If a user wants to find every reference to John 3:16 in a book, he will eventually end up at a Verse Entry for John 3:16, then following the pointer to the Occurrence Entry list for John 3:16. The Occurrence Entry will contain a list of all the sections in the book which refer to John 3:16.

Moving up to Chapter Entries, we observe that in many reference books we find citations such as “John 3.” That is, the entire chapter is mentioned in one citation. The reference book is not speaking of the details of any particular verse in chapter three, but rather is referring to the contents of the entire chapter. If a user is searching for information on John 3:16, he may or may not be interested in sections of the book which discuss the entire third chapter of John. This index structure allows the Book Reader to distinguish between references to a single verse (such as John 3:16) and references to the entire chapter (John 3).

The Chapter Entry for John 3 will contain two useful pointers. One is to occurrences of references to all of John 3. The other is to sections in the book that refer to the entire chapter by naming every single verse in the chapter. For example, a section of a commentary might give a breakdown of the chapter as: “Verses 3:1-21 are Jesus’ discourse on the new birth. This is followed by a discussion of his ministry in the Judean countryside (3:22-4:4).” In these two sentences, all of chapter three is referred to, but there are references to particular verses in the chapter. This section would appear in the latter of the two Occurrence Entries mentioned above. This structure saves us from naming every single verse in separate Verse Entries. We simply include this section in the Occurrence Entry for the second Occurrence Entry pointer in the Chapter Entry for chapter three. Book Readers, then, must include this Occurrence Entry when told that the user wants to zero in on references to John 3:16 but is not interested in references to John 3 as a whole chapter.

The Book Entry is structured in a similar fashion, but now with three Occurrence Entry pointers. The first is to all sections that reference the entire book; the second to sections which refer to the entire book by naming each chapter separately; and the third to sections which refer to the entire book by naming every verse in the book separately. The latter seems impossible but is actually quite common in sections that consist of an outline of the entire book (such as the notes that appear at the beginning of each book of the Bible in a study Bible). The Book Reader can use this structure to help the user narrow or widen his search to find pertinent material.

Now that we’ve seen how the Occurrence Entries are built, we can look at the overall structure of the file. Each Book Entry points not only to three Occurrence Entries, but it also points to the beginning of the Chapter Entries for chapters in this book. Each Chapter Entry points not only to two Occurrence Entries, but it also points to the beginning of the Verse Entries for verses in this chapter. And finally, the Verse Entries point at one Occurrence Entry each.

Note that there are only entries for verses that are mentioned in the book. That is, if only Genesis 1:1 and Revelation 22:21 are mentioned in a book, then there would be two Book Entries (one each for Genesis and Revelation); two Chapter Entries (one each for Genesis 1 and Revelation 22); and two Verse Entries (one each for Genesis 1:1 and Revelation 22:21). Only the Verse Entries would point to Occurrence Entries since the verses are specifically named.

Note further that this index only records the sections in which a citation occurs. It does not give an offset to a particular place within that section where the reference can be found. It is necessary for the Book Reader to scan the text of a section to find the place where the verse is referred to. It is possible that there will be more than one place in the section where the verse is mentioned. The Book Reader should take this into account and provide a way to find the next occurrence within a section.

Beginning with version 1.1 of STEP, the VERSES.IDX file may be further compressed in order to reduce space required. See Appendix B for a description of the algorithm used. The following sections contain some additional, brief comments on the implementation of the compression algorithm.

Version Record

The Version Record is identical to that in SECTIONS.IDX (see page 37).

Header Record

A 1 in the Compression flag value indicates the file is compressed (see Appendix B). The Total number of levels value is used in the compression algorithm.

Record Contents

· Size of Header Record, two bytes

· Number of books in Book Entries, two bytes

· Size of Book Entries entry, two bytes

· Size of Chapter Entries entry, two bytes

· Size of Verse Entry entry, two bytes

· Compression flag, one byte (version 1.1 or higher; in earlier versions this byte is reserved)

· Total number of levels in this book, four bytes (version 1.1 or higher; in earlier versions these bytes are reserved)

· Reserved, 2 bytes

Book Entries

Book Number uses the numbering scheme listed in VSYNC.IDX (see page 50).

Record Contents

· Book Number, two bytes

· Number of Chapter Entries for this book, two bytes

· Pointer into Chapter Entries for chapters of this book, four bytes

· Pointer to Occurrence Entries for occurrences of references to this book, four bytes

· Pointer to Occurrence Entries for sections which refer to this book by naming each chapter of the book, four bytes

· Pointer to Occurrence Entries for sections which refer to this book by naming each verse of each chapter of the book, four bytes

Chapter Entries

Record Contents

· Chapter Number, two bytes

· Number of Verse Entries for this chapter, two bytes

· Pointer into Verse Entries for verses of this chapter, four bytes

· Pointer to Occurrence Entries for occurrences of references to this chapter, four bytes

· Pointer to Occurrence Entries for sections which refer to this chapter by naming each verse of the chapter, four bytes

Verse Entries

Record Contents

· Verse Number, two bytes

· Pointer to Occurrence Entries for occurrences of references to this verse, four bytes

Occurrence Entries

This area is accessed through pointers stored in the Book, Chapter, and Verse Entries, above.

Record Contents for Uncompressed Entries

· Number of items in list to follow, four bytes

· List of indexes into Level Entries in SECTIONS.IDX indicating sections in which a reference to this book, chapter, or verse can be found. Each is four bytes.

Record contents for compressed entries are listed below. Use the Level Count from the Verses Header record for N in the algorithm, and the number of items from this record for p in the algorithm to decompress the buffer. Note that since the first number could be 0 and the algorithm can’t encode a zero, the first decompressed number actually is one more the the value and you need to subtract 1 to get the original value back.

Record Contents for Compressed Entries

This area is accessed through pointers stored in the Book, Chapter, and Verse Entries, above.

· Number of items in the compressed list to follow, four bytes

· Compressed bits for the section hits

VIEWABLE.IDX

Books are presented to the user in “blocks” of text (as opposed to the entire book being displayed in one long scrolling view). Ends of blocks are marked with EndViewableText commands. A Glossary command also denotes the end of a block and the beginning of a glossary entry.

To present the book to the user in physical order, it is better to use this index than the SECTIONS.IDX file, since each viewable block of text may contain more than one section from that index.

Note that the first block is a pointer to the beginning of BOOK.DAT where a series of document-level RTF control words are stored. To create a valid “chunk” of RTF, the Book Reader must concatenate this block with the block to be displayed before handing it off to the RTF parser functions within the Reader. That is, viewable block n is constructed by starting with the text in viewable block 0 (zero — the first viewable block in the Block Entries, below) and adding the text from BOOK.DAT at viewable block n.

Version Record

The Version Record is identical to that in SECTIONS.IDX (see page 37).

Header Record

The Header Record contains a count of non-glossary blocks followed by a count of glossary blocks. Compression Type is currently 0 for none and 1 for LZSS. Uncompressed books are generally not used any longer; they are included here for completeness. The LZSS compression algorithm is included as an appendix to this specification.

Record Contents

· Size of Header Record, two bytes

· Number of non-glossary blocks in the Block Entries list to follow, four bytes

· Number of glossary entries, four bytes

· Compression Type, one byte

· Reserved, one byte

· Size of Block Entries entry, two bytes

· Reserved, two bytes

Block Entries

Note that the first entry is not really displayable contents from BOOK.DAT, but rather is a pointer to the area at the beginning of BOOK.DAT containing document-level RTF control words. See Note above.

Record Contents

· Pointer to start of block in BOOK.DAT, four bytes

· Length of block (uncompressed), four bytes

· Length of block (compressed), four bytes

Synchronization Indexes

The type of synchronization index generated for a book depends upon its SyncType control word. For Verse synchronization, VSYNC.IDX is generated; for Word synchronization, WSYNC.IDX; for Strongs Number, SSYNC.IDX; and for Date synchronization, DSYNC.IDX.

VSYNC.IDX

Verses that have synchronization points within the document are referenced in a VSYNC.IDX file. The Book Reader program may use these records to synchronize the book to the Bible.

It is important to note that only verses referenced in the BOOK.DAT are included in the Sync Point List. If a book of the Bible has no verses referenced in the BOOK.DAT file, then the entry for that book points to the Sync Point List entry for the subsequent book.

Version Record

The Version Record is identical to that in SECTIONS.IDX (see page 37).

Header Record

Contains information about the Book Pointer List that follows. Rather than including an entry in the Book Pointer List for every possible book of the Bible that could be synchronized to, the list entries for only those books between the lowest and highest book numbers specifically used in the book. A commentary on the book of Joshua, for example, would have both a first and last book number of 6 (based on the chart on page 50). A commentary which contained SyncTo commands for most of the books of the Old Testament, including Genesis and Malachi, would have a first book number of 1 and a last book number of 39.

Record Contents

· Size of Header Record, two bytes

· First book number represented in the Book Pointer List, two bytes

· Last book number in the Book Pointer List, two bytes

· Size of Book Pointer List entry, two bytes

· Size of Sync Point List entry, two bytes

· Reserved, six bytes

Book Pointer List

A list of pointers to the first entry in the Sync Point List for each book followed by the number of entries for that book. If a particular book has no entries, its length value will be zero and the pointer value is undefined. The first entry in this list corresponds to the “First book number” indicated in the Header Record.

The position of a book in this list is determined by its book number from the table on page 50 (“Book Numbers”).

Record Contents

· Pointer to first Sync Point List entry for this book, four bytes

· Number of entries in Sync Point List for this book, two bytes

Sync Point List

Each entry consists of a chapter and verse number followed by an index into Level Entries in SECTIONS.IDX at which the section identified by the corresponding SyncTo control word is located. If there is no section corresponding to this book, chapter and verse, then there is no corresponding entry in this list.

Record Contents

· Chapter number, two bytes

· Verse number, two bytes

· Index into Level Entries in SECTIONS.IDX, four bytes

WSYNC.IDX

Words that have synchronization points within the document are referenced in a WSYNC.IDX file. The Book Reader program will use these records to synchronize the Book Reader to a section dealing with the word.

Version Record

The Version Record is identical to that in SECTIONS.IDX (see page 37).

Word List Header

Contains general information about the data in the file.

Record Contents

· Size of Word List Header, two bytes

· Language tag (all words must be in the same language), format same as CONCORD.IDX, two bytes

· Number of words in Word List, four bytes

· Size of Word List list entry, two bytes

· Reserved, six bytes

Word List

Consists of a list of pointers to each word in alphabetical order.

Record Contents

· Index into Level Entries in SECTIONS.IDX corresponding to SyncTo section for this word, four bytes

· Pointer to a Word List Entry, four bytes

Word List Entry

No assumption should be made about the order of the words in this buffer.

Record Contents

· Length (number of characters to follow) of word, two bytes

· Spelling of word, variable length

SSYNC.IDX

The Strongs index has an identical format to the WSYNC.IDX file. Strongs numbers are stored as ASCII strings.

DSYNC.IDX

The Date index has an identical format to the WSYNC.IDX file. Dates are stored as MMDD where MM is the ordinal of the month (01, 02, 03 ... 12) and DD is the day (01, 02, 03 ... 31).

Encoding of Bible Verse References

Book Numbers

The Conversion Program uses book numbers to keep references to particular books of the Bible unambiguous. This is especially important in those books that have a different verse numbering in Protestant vs. Catholic Bibles. The following table lists the book numbers and contents of the recognized books.

The following table lists all of the books contained in any of the Bibles that are commonly published. The purpose of this table is to assign a book number to each unique book. This means that if two books with different names in two different Bibles contain exactly the same verses, they are given the same book number. For example, Ezra in the KJV is exactly the same as 1 Esdras in the Vulgate. Therefore, 1 Esdras in the Vulgate and Ezra in the KJV will both be referred to by the same book number.

This also means that two Bibles which both contain a book of the same name but which have a different verse numbering scheme or different contents receive different book numbers. An example of this is the book of 3 John, which has 14 verses in the KJV but 15 verse in the RSV and NRSV. Another example is the book of Daniel, which contains apocryphal verses in some Bibles and not in others.

The reason for this numbering philosophy is that it allows a book number by itself to specify the exact contents of a book. If one knows that two Bibles both contain a book 15, one can be sure that every verse in book 15 of one Bible is also contained in book 15 of the other Bible. One can have this assurance without having to know the type of the Bible or even the names given to the books. The book number alone is a specification of its contents in relation to all other books.

The actual numbers themselves are arbitrary — nothing should depend on the ordering of the books in the list. There is, however, some reasoning to the order of the list. The first 66 books are in the order you would find in a typical King James Bible. Following those books are the two KJV books that have different verse numbering in the NRSV. Next comes the 15 traditional “Apocrypha” books followed by three additional apocryphal books of interest to Eastern Orthodox readers. Finally, there are the books that are combinations of some of the previous books.

Now that these numbers have been assigned, all references to the book numbers must remain consistent. Any additional books that are added in the future will have to be added to the end of the list. This is necessary even though they might fit better earlier in the list based on the above logic.

Book Number
Book

Name
Comments

1
Genesis

2
Exodus

3
Leviticus

4
Numbers

5
Deuteronomy

6
Joshua

7
Judges

8
Ruth

9
1 Samuel

10
2 Samuel

11
1 Kings

12
2 Kings

13
1 Chronicles

14
2 Chronicles

15
Ezra
Also called 1 Esdras in the Vulgate

16
Nehemiah
Also called 2 Esdras in the Vulgate

17
Esther
Without apocrypha

18
Job

19
Psalms
Does not contain Psalm 151

20
Proverbs

21
Ecclesiastes

22
Song of Solomon

23
Isaiah

24
Jeremiah

25
Lamentations

26
Ezekiel

27
Daniel
Without apocrypha

28
Hosea

29
Joel

30
Amos

31
Obadiah

32
Jonah

33
Micah

34
Nahum

35
Habakkuk

36
Zephaniah

37
Haggai

38
Zechariah

39
Malachi

40
Matthew

41
Mark

42
Luke

43
John

44
Acts

45
Romans

46
1 Corinthians

47
2 Corinthians

48
Galations

49
Ephesians

50
Philippians

51
Colossians

52
1 Thessalonians

53
2 Thessalonians

54
1 Timothy

55
2 Timothy

56
Titus

57
Philemon

58
Hebrews

59
James

60
1 Peter

61
2 Peter

62
1 John

63
2 John

64
3 John
KJV verse numbering (ie. 14 verses)

65
Jude

66
Revelation
KJV verse numbering (ie. 17 verses in chapter 12)

67
3 John (RSV)
RSV and NRSV verse numbering (ie.15 verses)

68
Revelation (NRSV)
NRSV verse numbering (ie. 18 verses in chapter 12)

69
Tobit
NAB verse numbering

70
Judith

71
Additions to Esther
Effective 1/18/96 this book number is not used. No Bibles were found that included this book. Book 95 is similar and is used in the NRSVA translation. Includes: A: The Dream of Mordecai, B: The Edict of Artaxerxes, C: The Prayers of Mordecai and Esther, D: Esther Before the King, E: The Counter Edict, F: The Epilogue

72
Wisdom of Solomon

73
Sirach
Sometimes called Ecclesiasticus or Wisdom of Jesus Son of Sirach. NAB verse numbering

74
Baruch
Without Letter of Jeremiah. NRSV verse numbering.

75
Letter of Jeremiah

76
Prayer of Azariah
Also known as The Prayer of Azariah and the Song of the Three Jews

An addition to the book of Daniel

77
Susanna
An addition to the book of Daniel

78
Bel and the Dragon
An addition to the book of Daniel

79
1 Maccabees
NAB verse numbering.

80
2 Maccabees
NAB verse number.

81
1 Esdras
As included in the NRSV

Called 2 Esdras in Slavonic Bibles

Called 3 Esdras in the Vulgate

82
Prayer of Manasseh
NRSV verse numbering

83
2 Esdras
As included in the NRSV

Called 3 Esdras in Slavonic Bibles

Called 4 Esdras in the Vulgate

84
3 Maccabees
NRSV verse numbering

85
4 Maccabees
NRSV verse numbering

86
Psalm 151
NRSV verse numbering

87
2 Esdras
Septuagint. Ezra and Nehemiah combined

88
Esther with Additions

The Esther additions are inserted in the middle of several chapters at six different points and are labeled with the chapter letters A-F. The existing Esther verses continue with the same verse numbers. NAB verse numbering.

89
Daniel with Additions

This is the book of Daniel with the books Prayer of Azariah, Susanna, and Bel and the Dragon inserted into the existing book of Daniel. The verses of the additional books are renumbered and surrounding verses from Daniel renumbered to maintain sequential verse numbering. NAB verse numbering.

90
Baruch

Contains the Letter of Jeremiah as chapter 6. NAB verse numbering.

91
Psalms

(with Psalm 151)
Septuagint includes Psalm 151.

92
Psalms
NAB verse numbering

93
Tobit
NRSV verse numbering

94
Sirach
NRSV verse numbering

95
Esther
NRSV verse numbering

96
1 Maccabees
NRSV and NJB verse numbering

97
2 Maccabees
NRSV and NJB verse numbering

98
Tobit
New Jerusalem Bible verse numbering

99
Sirach
New Jerusalem Bible verse numbering

100
Esther
New Jerusalem Bible verse numbering

101
Daniel
New Jerusalem Bible verse numbering

102
Psalms
New Jerusalem Bible verse numbering

Translation Numbers

Where a translation or Bible number is called for in the specification, the following values will be used:

Translation
Value

KJV
1

NASB
2

NIV
3

NKJV
4

NCV
5

TLB
6

ASV
7

RSV
8

NRSV
9

NAB
10

NJB
11

NRSVA
12

NLT
13

ICB
14

YLT
15

DNT
16

GWT
17

GNT
18

(The NRSVA is the NRSV with Apocrypha added between the Old and New Testament.)

Contents of Bibles

Each of the recognized translations may include a different collection of books, though most “Protestant” Bibles (KJV, NIV, NKJV, etc.) contain the same sixty-six books. Combining the translation numbers above and the book numbers on page 46, the following table shows the contents of each of the supported Bibles.

KJV
NASB
NIV
NKJV
NCV & ICB
TLB
ASV
RSV
NRSV & NLT
NAB
NJB
NRSVA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

67

65

68
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

67

65

66
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

67

65

68
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

69

70

88

79

80

18

92

20

21

22

72

73

23

24

25

90

26

89

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

67

65

68
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

98

70

100

79

80

18

102

20

21

22

72

99

23

24

25

74

26

101

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

67

65

68
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

69

70

95

72

94

74

75

76

77

78

79

80

81

82

86

84

83

85

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

67

65

68

Appendix A: LZSS Compression Algorithm

(as used in BOOK.DAT)

Compression Info, 10-11-95

Jeff Wheeler

Source of Algorithm

The compression algorithms used here are based upon the algorithms developed and published by Haruhiko Okumura in a paper entitled "Data Compression Algorithms of LARC and LHarc." This paper discusses three compression algorithms, LSZZ, LZARI, and LZHUF. LZSS is described as the "first" of these, and is described as providing moderate compression with good speed. LZARI is described as an improved LZSS, a combination of the LZSS algorithm with adaptive arithmetic compression. It is described as being slower than LZSS but with better compression. LZHUF (the basis of the common LHA compression program) was included in the paper, however, a free usage license was not included.

The following are copies of the statements included at the beginning of each source code listing that was supplied in the working paper.

 LZSS, dated 4/6/89, marked as "Use, distribute and

 modify this program freely."

 LZARI, dated 4/7/89, marked as "Use, distribute and

 modify this program freely."

 LZHUF, dated 11/20/88, written by Haruyasu Yoshizaki,

 translated by Haruhiko Okumura on 4/7/89. Not

 expressly marked as redistributable or modifiable.

Since both LZSS and LZARI are marked as "use, distribute and modify freely" we have felt at liberty basing our compression algorithm on either of these.

Selection of Algorithm

Working samples of three possible compression algorithms are supplied in Okumura's paper. Which should be used?

LZSS is the fastest at decompression, but does not generated as small a compressed file as the other methods. The other two methods provided, perhaps, a 15% improvement in compression. Or, put another way, on a 100K file, LZSS might compress it to 50K while the others might approach 40-45K. For STEP purposes, it was decided that decoding speed was of more importance than tighter compression. For these reasons, the first compression algorithm implemented is the LZSS algorithm.

About LZSS Encoding

(adapted from Haruhiko Okumura's paper)

This scheme was proposed by Ziv and Lempel [1]. A slightly modified version is described by Storer and Szymanski [2]. An implementation using a binary tree has been proposed by Bell [3].

The algorithm is quite simple.

1. Keep a ring buffer which initially contains all space characters.

2. Read several letters from the file to the buffer.

3. Search the buffer for the longest string that matches the letters just read, and send its length and position into the buffer.

If the ring buffer is 4096 bytes, the position can be stored in 12 bits. If the length is represented in 4 bits, the <position, length> pair is two bytes long. If the longest match is no more than two characters, then just one character is sent without encoding. The process starts again with the next character. An extra bit is sent each time to tell the decoder whether the next item is a character of a <position, length> pair.

[1] J. Ziv and A. Lempel, IEEE Transactions IT-23, 337-343 (1977).

[2] J. A. Storer and T. G. Szymanski, J. ACM, 29, 928-951 (1982).

[3] T.C. Gell, IEEE Transactions COM-34, 1176-1182 (1986).

void InitTree(// no return value

 void); // no parameters

void InsertNode(// no return value

 short int Pos); // position in the buffer

void DeleteNode(// no return value

 short int Node); // node to be removed

void Encode(// no return value

 void); // no parameters

void Decode(// no return value

 void); // no parameters

// The following are constant sizes used by the compression algorithm.

//

// N - This is the size of the ring buffer. It is set

// to 4K. It is important to note that a position

// within the ring buffer requires 12 bits.

//

// F - This is the maximum length of a character sequence

// that can be taken from the ring buffer. It is set

// to 18. Note that a length must be 3 before it is

// worthwhile to store a position/length pair, so the

// length can be encoded in only 4 bits. Or, put yet

// another way, it is not necessary to encode a length

// of 0-18, it is necessary to encode a length of

// 3-18, which requires 4 bits.

//

// THRESHOLD - It takes 2 bytes to store an offset and

// a length. If a character sequence only

// requires 1 or 2 characters to store

// uncompressed, then it is better to store

// it uncompressed than as an offset into

// the ring buffer.

//

// Note that the 12 bits used to store the position and the 4 bits

// used to store the length equal a total of 16 bits, or 2 bytes.

#define N

4096

#define F

18

#define THRESHOLD
3

#define NOT_USED
N

// m_ring_buffer is a text buffer. It contains "nodes" of

// uncompressed text that can be indexed by position. That is,

// a substring of the ring buffer can be indexed by a position

// and a length. When decoding, the compressed text may contain

// a position in the ring buffer and a count of the number of

// bytes from the ring buffer that are to be moved into the

// uncompressed buffer.

//

// This ring buffer is not maintained as part of the compressed

// text. Instead, it is reconstructed dynamically. That is,

// it starts out empty and gets built as the text is decompressed.

//

// The ring buffer contain N bytes, with an additional F - 1 bytes

// to facilitate string comparison.

unsigned char m_ring_buffer[N + F - 1];

// m_match_position and m_match_length are set by InsertNode().

//

// These variables indicate the position in the ring buffer

// and the number of characters at that position that match

// a given string.

short int m_match_position;

short int m_match_length;

// m_lson, m_rson, and m_dad are the Japanese way of referring to

// a tree structure. The dad is the parent and it has a right and

// left son (child).

//

// For i = 0 to N-1, m_rson[i] and m_lson[i] will be the right

// and left children of node i.

//

// For i = 0 to N-1, m_dad[i] is the parent of node i.

//

// For i = 0 to 255, rson[N + i + 1] is the root of the tree for

// strings that begin with the character i. Note that this requires

// one byte characters.

//

// These nodes store values of 0...(N-1). Memory requirements

// can be reduces by using 2-byte integers instead of full 4-byte

// integers (for 32-bit applications). Therefore, these are

// defined as "short ints."

short int m_lson[N + 1];

short int m_rson[N + 257];

short int m_dad[N + 1];

/*

 InitTree

 This function initializes the tree nodes to "empty" states.

*/

void InitTree(// no return value

 void) // no parameters

 throw() // exception list

 {

 int i;

 // For i = 0 to N - 1, m_rson[i] and m_lson[i] will be the right

 // and left children of node i. These nodes need not be

 // initialized. However, for debugging purposes, it is nice to

 // have them initialized. Since this is only used for compression

 // (not decompression), I don't mind spending the time to do it.

 //

 // For the same range of i, m_dad[i] is the parent of node i.

 // These are initialized to a known value that can represent

 // a "not used" state.

 for (i = 0; i < N; i++)

 {

 m_lson[i] = NOT_USED;

 m_rson[i] = NOT_USED;

 m_dad[i] = NOT_USED;

 }

 // For i = 0 to 255, m_rson[N + i + 1] is the root of the tree

 // for strings that begin with the character i. This is why

 // the right child array is larger than the left child array.

 // These are also initialzied to a "not used" state.

 //

 // Note that there are 256 of these, one for each of the possible

 // 256 characters.

 for (i = N + 1; i <= (N + 256); i++)

 {

 m_rson[i] = NOT_USED;

 }

 // Done.

 }

/*

 InsertNode

 This function inserts a string from the ring buffer into one of

 the trees. It loads the match position and length member variables

 for the longest match.

 The string to be inserted is identified by the parameter Pos,

 A full F bytes are inserted. So, m_ring_buffer[Pos ... Pos+F-1]

 are inserted.

 If the matched length is exactly F, then an old node is removed

 in favor of the new one (because the old one will be deleted

 sooner).

 Note that Pos plays a dual role. It is used as both a position

 in the ring buffer and also as a tree node. m_ring_buffer[Pos]

 defines a character that is used to identify a tree node.

*/

void InsertNode(// no return value

 short int Pos) // position in the buffer

 throw() // exception list

 {

 short int i;

 short int p;

 int cmp;

 unsigned char * key;

 ASSERT(Pos >= 0);

 ASSERT(Pos < N);

 cmp = 1;

 key = &(m_ring_buffer[Pos]);

 // The last 256 entries in m_rson contain the root nodes for

 // strings that begin with a letter. Get an index for the

 // first letter in this string.

 p = (short int) (N + 1 + key[0]);

 // Set the left and right tree nodes for this position to "not

 // used."

 m_lson[Pos] = NOT_USED;

 m_rson[Pos] = NOT_USED;

 // Haven't matched anything yet.

 m_match_length = 0;

 for (; ;)

 {

 if (cmp >= 0)

 {

 if (m_rson[p] != NOT_USED)

 {

 p = m_rson[p];

 }

 else

 {

 m_rson[p] = Pos;

 m_dad[Pos] = p;

 return;

 }

 }

 else

 {

 if (m_lson[p] != NOT_USED)

 {

 p = m_lson[p];

 }

 else

 {

 m_lson[p] = Pos;

 m_dad[Pos] = p;

 return;

 }

 }

 // Should we go to the right or the left to look for the

 // next match?

 for (i = 1; i < F; i++)

 {

 cmp = key[i] - m_ring_buffer[p + i];

 if (cmp != 0)

 break;

 }

 if (i > m_match_length)

 {

 m_match_position = p;

 m_match_length = i;

 if (i >= F)

 break;

 }

 }

 m_dad[Pos] = m_dad[p];

 m_lson[Pos] = m_lson[p];

 m_rson[Pos] = m_rson[p];

 m_dad[m_lson[p]] = Pos;

 m_dad[m_rson[p]] = Pos;

 if (m_rson[m_dad[p]] == p)

 {

 m_rson[m_dad[p]] = Pos;

 }

 else

 {

 m_lson[m_dad[p]] = Pos;

 }

 // Remove "p"

 m_dad[p] = NOT_USED;

 }

/*

 DeleteNode

 This function removes the node "Node" from the tree.

*/

void DeleteNode(// no return value

 short int Node) // node to be removed

 throw() // exception list

 {

 short int q;

 ASSERT(Node >= 0);

 ASSERT(Node < (N+1));

 if (m_dad[Node] == NOT_USED)

 {

 // not in tree, nothing to do

 return;

 }

 if (m_rson[Node] == NOT_USED)

 {

 q = m_lson[Node];

 }

 else if (m_lson[Node] == NOT_USED)

 {

 q = m_rson[Node];

 }

 else

 {

 q = m_lson[Node];

 if (m_rson[q] != NOT_USED)

 {

 do

 {

 q = m_rson[q];

 }

 while (m_rson[q] != NOT_USED);

 m_rson[m_dad[q]] = m_lson[q];

 m_dad[m_lson[q]] = m_dad[q];

 m_lson[q] = m_lson[Node];

 m_dad[m_lson[Node]] = q;

 }

 m_rson[q] = m_rson[Node];

 m_dad[m_rson[Node]] = q;

 }

 m_dad[q] = m_dad[Node];

 if (m_rson[m_dad[Node]] == Node)

 {

 m_rson[m_dad[Node]] = q;

 }

 else

 {

 m_lson[m_dad[Node]] = q;

 }

 m_dad[Node] = NOT_USED;

 }

/*

 Encode

 This function "encodes" the input stream into the output stream.

 The GetChars() and SendChars() functions are used to separate

 this method from the actual i/o.

*/

void Encode(// no return value

 void) // no parameters

 {

 short int i; // an iterator

 short int r; // node number in the binary tree

 short int s; // position in the ring buffer

 unsigned short int len; // len of initial string

 short int last_match_length; // length of last match

 short int code_buf_pos; // position in the output buffer

 unsigned char code_buf[17]; // the output buffer

 unsigned char mask; // bit mask for byte 0 of out buf

 unsigned char c; // character read from string

 // Start with a clean tree.

 InitTree();

 // code_buf[0] works as eight flags. A "1" represents that the

 // unit is an unencoded letter (1 byte), and a "0" represents

 // that the next unit is a <position,length> pair (2 bytes).

 //

 // code_buf[1..16] stores eight units of code. Since the best

 // we can do is store eight <position,length> pairs, at most 16

 // bytes are needed to store this.

 //

 // This is why the maximum size of the code buffer is 17 bytes.

 code_buf[0] = 0;

 code_buf_pos = 1;

 // Mask iterates over the 8 bits in the code buffer. The first

 // character ends up being stored in the low bit.

 //

 // bit 8 7 6 5 4 3 2 1

 // | |

 // | first sequence in code buffer

 // |

 // last sequence in code buffer

 mask = 1;

 s = 0;

 r = (short int) N - (short int) F;

 // Initialize the ring buffer with spaces...

 // Note that the last F bytes of the ring buffer are not filled.

 // This is because those F bytes will be filled in immediately

 // with bytes from the input stream.

 memset(m_ring_buffer, ' ', N - F);

 // Read F bytes into the last F bytes of the ring buffer.

 //

 // This function loads the buffer with X characters and returns

 // the actual amount loaded.

 len = GetChars(&(m_ring_buffer[r]), F);

 // Make sure there is something to be compressed.

 if (len == 0)

 return;

 // Insert the F strings, each of which begins with one or more

 // 'space' characters. Note the order in which these strings

 // are inserted. This way, degenerate trees will be less likely

 // to occur.

 for (i = 1; i <= F; i++)

 {

 InsertNode((short int) (r - i));

 }

 // Finally, insert the whole string just read. The

 // member variables match_length and match_position are set.

 InsertNode(r);

 // Now that we're preloaded, continue till done.

 do

 {

 // m_match_length may be spuriously long near the end of

 // text.

 if (m_match_length > len)

 {

 m_match_length = len;

 }

 // Is it cheaper to store this as a single character? If so,

 // make it so.

 if (m_match_length < THRESHOLD)

 {

 // Send one character. Remember that code_buf[0] is the

 // set of flags for the next eight items.

 m_match_length = 1;

 code_buf[0] |= mask;

 code_buf[code_buf_pos++] = m_ring_buffer[r];

 }

 // Otherwise, we do indeed have a string that can be stored

 // compressed to save space.

 else

 {

 // The next 16 bits need to contain the position (12 bits)

 // and the length (4 bits).

 code_buf[code_buf_pos++] = (unsigned char) m_match_position;

 code_buf[code_buf_pos++] = (unsigned char) (

 ((m_match_position >> 4) & 0xf0) |

 (m_match_length - THRESHOLD));

 }

 // Shift the mask one bit to the left so that it will be ready

 // to store the new bit.

 mask = (unsigned char) (mask << 1);

 // If the mask is now 0, then we know that we have a full set

 // of flags and items in the code buffer. These need to be

 // output.

 if (mask == 0)

 {

 // code_buf is the buffer of characters to be output.

 // code_buf_pos is the number of characters it contains.

 SendChars(code_buf, code_buf_pos);

 // Reset for next buffer...

 code_buf[0] = 0;

 code_buf_pos = 1;

 mask = 1;

 }

 last_match_length = m_match_length;

 // Delete old strings and read new bytes...

 for (i = 0; i < last_match_length; i++)

 {

 // Get next character...

 if (GetChars(&c, 1) != 1)

 break;

 // Delete "old strings"

 DeleteNode(s);

 // Put this character into the ring buffer.

 //

 // The original comment here says "If the position is near

 // the end of the buffer, extend the buffer to make

 // string comparison easier."

 //

 // That's a little misleading, because the "end" of the

 // buffer is really what we consider to be the "beginning"

 // of the buffer, that is, positions 0 through F.

 //

 // The idea is that the front end of the buffer is duplicated

 // into the back end so that when you're looking at characters

 // at the back end of the buffer, you can index ahead (beyond

 // the normal end of the buffer) and see the characters

 // that are at the front end of the buffer wihtout having

 // to adjust the index.

 //

 // That is...

 //

 // 1234xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1234

 // | | |

 // position 0 end of buffer |

 // |

 // duplicate of front of buffer

 m_ring_buffer[s] = c;

 if (s < F - 1)

 {

 m_ring_buffer[s + N] = c;

 }

 // Increment the position, and wrap around when we're at

 // the end. Note that this relies on N being a power of 2.

 s = (short int) ((s + 1) & (N - 1));

 r = (short int) ((r + 1) & (N - 1));

 // Register the string that is found in

 // m_ring_buffer[r..r+F-1].

 InsertNode(r);

 }

 // If we didn't quit because we hit the last_match_length,

 // then we must have quit because we ran out of characters

 // to process.

 while (i++ < last_match_length)

 {

 DeleteNode(s);

 s = (short int) ((s + 1) & (N - 1));

 r = (short int) ((r + 1) & (N - 1));

 // Note that len hitting 0 is the key that causes the

 // do...while() to terminate. This is the only place

 // within the loop that len is modified.

 //

 // Its original value is F (or a number less than F for

 // short strings).

 if (--len)

 {

 InsertNode(r); /* buffer may not be empty. */

 }

 }

 // End of do...while() loop. Continue processing until there

 // are no more characters to be compressed. The variable

 // "len" is used to signal this condition.

 }

 while (len > 0);

 // There could still be something in the output buffer. Send it

 // now.

 if (code_buf_pos > 1)

 {

 // code_buf is the encoded string to send.

 // code_buf_ptr is the number of characters.

 SendChars(code_buf, code_buf_pos);

 }

 // Done!

 }

/*

 Decode

 This function "decodes" the input stream into the output stream.

 The GetChars() and SendChars() functions are used to separate

 this method from the actual i/o.

*/

void Decode(// no return value

 void) // no parameters

 {

 int k;

 int r; // node number

 unsigned char c[F]; // an array of chars

 unsigned char flags; // 8 bits of flags

 int flag_count; // which flag we're on

 short int pos; // position in the ring buffer

 short int len; // number of chars in ring buffer

 // Initialize the ring buffer with a common string.

 //

 // Note that the last F bytes of the ring buffer are not filled.

 memset(m_ring_buffer, ' ', N - F);

 r = N - F;

 flags = (char) 0;

 flag_count = 0;

 for (; ;)

 {

 // If there are more bits of interest in this flag, then

 // shift that next interesting bit into the 1's position.

 //

 // If this flag has been exhausted, the next byte must

 // be a flag.

 if (flag_count > 0)

 {

 flags = (unsigned char) (flags >> 1);

 flag_count--;

 }

 else

 {

 // Next byte must be a flag.

 if (GetChars(&flags, 1) != 1)

 break;

 // Set the flag counter. While at first it might appear

 // that this should be an 8 since there are 8 bits in the

 // flag, it should really be a 7 because the shift must

 // be performed 7 times in order to see all 8 bits.

 flag_count = 7;

 }

 // If the low order bit of the flag is now set, then we know

 // that the next byte is a single, unencoded character.

 if (flags & 1)

 {

 if (GetChars(c, 1) != 1)

 break;

 if (SendChars(c, 1) != 1)

 break;

 // Add to buffer, and increment to next spot. Wrap at end.

 m_ring_buffer[r] = c[0];

 r = (short int) ((r + 1) & (N - 1));

 }

 // Otherwise, we know that the next two bytes are a

 // <position,length> pair. The position is in 12 bits and

 // the length is in 4 bits.

 else

 {

 // Original code:

 // if ((i = getc(infile)) == EOF)

 // break;

 // if ((j = getc(infile)) == EOF)

 // break;

 // i |= ((j & 0xf0) << 4);

 // j = (j & 0x0f) + THRESHOLD;

 //

 // I've modified this to only make one input call, and

 // have changed the variable names to something more

 // obvious.

 if (GetChars(c, 2) != 2)

 break;

 // Convert these two characters into the position and

 // length. Note that the length is always at least

 // THRESHOLD, which is why we're able to get a length

 // of 18 out of only 4 bits.

 pos = (short int) (c[0] | ((c[1] & 0xf0) << 4));

 len = (short int) ((c[1] & 0x0f) + THRESHOLD);

 // There are now "len" characters at position "pos" in

 // the ring buffer that can be pulled out. Note that

 // len is never more than F.

 for (k = 0; k < len; k++)

 {

 c[k] = m_ring_buffer[(pos + k) & (N - 1)];

 // Add to buffer, and increment to next spot. Wrap at end.

 m_ring_buffer[r] = c[k];

 r = (short int) ((r + 1) & (N - 1));

 }

 // Add the "len" characters to the output stream.

 if (SendChars(c, len) != len)

 break;

 }

 }

 }

Appendix B: Bit-Vector Compression Algorithm

(As used in CONCORD.IDX and VERSES.IDX)

Source of Algorithm

Dr. James Sneeringer of NavPress Software supplied a technical paper which details the algorithm serving as the basis for the compression of some entries in CONCORD.IDX and VERSES.IDX. The descriptions of the data in these files include references to parameters to this algorithm.

This technical paper is entitled:

Technical Report 91/21

Coding for Compression in Full-Text Retrieval Systems

Alistair Moffat, Justin Zobel

November 1991

This article was first published in the following.

Proceedings, 2nd IEEE Data Compression Conference

Edited by J.A. Storer and M. Cohn

Published by IEEE Computer Society Press, Los Alamitos, CA

March, 1992, pages 72-91

It is also available in the following works.

Data Compression in Full-Text Retrieval Systems. Bell, T. C.; Moffat, A.; Nevill-Manning, C. G.; Witten, I. H.; Zobel, J. Journal of the American Society for Information Science, volume 44 number 9, October 1993, pages 508-531.

Managing Gigabytes: Compressing and Indexing Documents and Images. Witten, I. H.; Moffat, A.; and Bell, T. C. Van Nostrand Reinhold, publisher. New York, NY, 1994.

Essential Code Functions

In the code sample that follows, it is assumed that an appropriate class exists to serve as a source and destination for compressed bits. The IOClass class provides GetBit and PutBit functions that read and write one bit, respectively, from and to the file.

To use the class, call Initialize with values for p and N as described in the sections of the specification which use this compression method. The Encode function encodes an integer using the values of p and N supplied to Initialize. Decode returns the next integer from the input bitstream, again using p and N as provided to Initialize.

template <class IOClass>

class ValueEncoderDecoder

 {

public:

 ValueEncoderDecoder()

 {

 m_N = 0;

 m_p = 0;

 m_b = 0;

 m_logB = 0;

 m_threshold = 0;

 m_pBitIO = NULL;

 }

 void Initialize(UINT p, UINT N, IOClass& bitIO)

 {

 ASSERT(p != 0);

 m_p = p;

 m_N = N;

 m_pBitIO = &bitIO;

 // Calculate m_b = .69 (m_N / m_p)

 m_b = MulDiv(69, m_N, 100) / m_p;

 if (m_b == 0)

 m_b = 1;

 // Ceiling(log2(b)) is the highest bit on for b + (b - 1)

 UINT roundB = m_b + (m_b - 1);

 // Clear out all but the top bit of roundB

 UINT mask = 1;

 m_logB = 0;

 while (roundB != 0)

 {

 roundB &= ~mask;

 mask <<= 1;

 m_logB++;

 }

 // The highest bit was mask >> 1

 roundB = mask >> 1;

 m_logB--;

 m_threshold = roundB - m_b;

 }

 void Encode(UINT value)

 {

 // Check if initialize has been called

 ASSERT(m_pBitIO != NULL);

 ASSERT(value > 0);

 if (value == 0)

 return;

 value--;

 while (value >= m_b)

 {

 m_pBitIO->PutBit(1);

 value -= m_b;

 }

 m_pBitIO->PutBit(0);

 UINT nBits;

 if (value < m_threshold)

 {

 nBits = m_logB - 1;

 }

 else

 {

 nBits = m_logB;

 value += m_threshold;

 }

 for (int iBits = nBits - 1; iBits >= 0; iBits--)

 m_pBitIO->PutBit((value>>iBits) & 1);

 }

 UINT Decode()

 {

 // Check if initialize has been called

 ASSERT(m_pBitIO != NULL);

 UINT x = 0, v = 0;

 while (m_pBitIO->GetBit())

 x += m_b;

 for (int i = m_logB - 2; i >= 0; i--)

 v = 2*v + m_pBitIO->GetBit();

 if ((v >= m_threshold) && (m_b > 1))

 {

 v = 2*v + m_pBitIO->GetBit();

 v = v - m_threshold;

 }

 return x + v + 1;

 }

private:

 UINT m_N;

 UINT m_p;

 UINT m_b;

 UINT m_logB;

 UINT m_threshold;

 IOClass* m_pBitIO;

 };

Appendix C: Summary of STEP Versions

Version
Summary

0.90
The original released version of STEP, including the Publisher's Toolit and the Programmers Toolkit.

0.91
Required the use of the EditionID field. This field allows book readers to determine how to treat different “copies” of the “same” book. A change to the SetInfo as required in the VOLUME.INI file was also made.

1.0
Added support for non-English words in BOOK.DAT and, therefore, CONCORD.IDX. Does not include support for non-English words in section names or “sync” files.

1.1
Added support for compressed CONCORD.IDX and VERSES.IDX files. Book versions 1.0 and older do not contain compressed CONCORD.IDX or VERSES.IDX files. Book versions 1.1 and newer can (but don’t have to) contain compressed CONCORD.IDX and VERSES.IDX files. (Note: the STEP conversion program may not support uncompressed CONCORD.IDX and VERSES.IDX files for version 1.1 and newer, though the spec does allow for this condition.)

2.0
An upcoming proposed version of STEP. It is anticipated that this version will contain support for:

· Non-English section names

· Non-English sync entries

· Bibles (keyword to identify the translation of a book, required for proper verse reference parsing and syncing)

Appendix D: Compressing Multimedia Files

The publisher of a STEP book may choose to compress all multimedia files (accessed via the LinkToMM control word) into one centralized file, called a BLOB file. Usage of the BLOB file format is at the discretion of the book publisher. While using a BLOB file often results in smaller book files (and therefore can allow additional books to be distributed on the same media, such as a CD), the support for BLOB files may not be included in all STEP book readers. This is a trade-off that the book publisher will need to consider.

Publisher Tools

The tools necessary to compress the multimedia files into one BLOB file are included in the STEP Publisher’s Toolkit.

Developer Tools

NavPress Software has supplied development tools compatible with the STEP Programmers Toolkit; the tools are included with the version 1.1 release of this toolkit.

File Format

Let N be the number of images in the MM.DAT file.

Let B be the number of bytes in each image header.

The BLOB file has the following format:

One file header:

4 bytes
Number of embedded files (N) in the MM.DAT file

4 bytes
Number of bytes (B) in each image header, minimum of 12

B-8 bytes
The letters “StepMM00”, signature & version

N image headers

4 bytes
Offset in MM.DAT file of this compressed, embedded file

4 bytes
Uncompressed size of this embedded file

B-8 bytes
The filename in all caps, with the extension

One trailer block

4 bytes
Offset in file where image N+1 would start (= file size)

4 bytes
0

B-8 bytes
The letters “EndMM”

The remainder of the file contains the embedded files. JPEG files are stored raw. All other files are compressed using ZLib.

For the format and source code of JPEG and ZLib, see the following:

· http://www.cis.ohio-state.edu/hypertext/faq/usenet/jpeg-faq/top.html

· http://quest.jpl.nasa.gov/zlib

Appendix E: STEP Book Locking & Unlocking

The STEP Specification itself does not address book locking and unlocking. However, some STEP publishers have agreed to extensions to the standard which allow participating companies to standardize locking and unlocking in such a way that compatible book readers may read the books which have been unlocked. Contact the STEP Administrator for more details on book unlocking.

What the STEP Extensions Provide

1. A standard method for locking a book (supplied in the STEP Conversion Program); a locked book cannot be read by any STEP book reader unless a key for that book is also available

2. A standard method for storing a key for a book on the customer’s computer

3. A standard method for retrieving a key for a book on the customer’s computer (supplied in the DLLs included with the STEP Programmers Toolkit)

What the STEP Extensions Do Not Provide

1. The ability for one publisher to unlock another publisher’s books (that is, Parsons Technology may not unlock a book published by NavPress Software, nor may NavPress Software unlock a book published by Parsons Technology)

2. A mechanism for transferring keys from the publisher to the customer’s computer – each publisher provides their own mechanism

What this Means to a Book Publisher

In order for a book publisher to participate in the locking and unlocking agreement, the publisher must enter into an agreement with the other participating publishers. Once accepted, the publisher can publish locked books as generated from the conversion program. The publisher must also supply a mechanism that the customer can use to unlock books from that publisher. This process of unlocking consists primarily of transferring book keys from the publisher to the customer’s computer. Since the publisher can only unlock books that it has published (and not books published by any other STEP publisher), this mechanism may be as secure or insecure as the publisher wishes.

What this Means to a Book Reader Developer

The modules provided in the STEP Programmers Toolkit already include the ability to read a book which has been locked when a key for that book is available on the computer. This allows any book reader built from the Programmers Toolkit to read locked books which have been unlocked by the publisher of that book. No additional development effort is necessary.

If you are developing a book reader without using the STEP Programmers Toolkit, and you desire to support the unlocking method, contact the STEP Administrator.

Appendix F: Sort Order for Non-English Languages

This appendix defines a sort order for each of the supported languages.

English

English is sorted according to standard conventions.

Transliterated Aramaic, Greek, Hebrew and Other

These languages are sorted according to the numeric value of the characters of their respective fonts.

Latin

Latin is sorted according to standard conventions.

French

French is sorted according to standard conventions.

German

German is sorted according to standard conventions.

Spanish

Spanish is sorted according to standard conventions.

Greek

Comparing Ancient Greek Words

The basic algorithm for Greek:

1. Change both Ancient Greek Unicode strings to their fully decomposed forms.
2. Compare the base letters in the two Ancient Greek strings using the Base Letters table to decide the order if corresponding letters are different.
3. If the two Ancient Greek words are still equal after step two, compare the diacriticals on the base letters from the beginning of the word to the end, using the Combining Diacriticals sort order table to decide the order in cases where the diacriticals differ.
Changes to the above algorithm to do the comparison ignoring case or ignoring diacriticals should be readily apparent.
Base Letters

Capital base letters come before small base letters. Dictionary order would be as follows:

Glyph
Unicode
Unicode Description

Á
0391
GREEK CAPITAL LETTER ALPHA

á
03B1
GREEK SMALL LETTER ALPHA

Â
0392
GREEK CAPITAL LETTER BETA

â
03B2
GREEK SMALL LETTER BETA

Ã
0393
GREEK CAPITAL LETTER GAMMA

ã
03B3
GREEK SMALL LETTER GAMMA

Ä
0394
GREEK CAPITAL LETTER DELTA

ä
03B4
GREEK SMALL LETTER DELTA

Å
0395
GREEK CAPITAL LETTER EPSILON

å
03B5
GREEK SMALL LETTER EPSILON

Æ
0396
GREEK CAPITAL LETTER ZETA

æ
03B6
GREEK SMALL LETTER ZETA

Ç
0397
GREEK CAPITAL LETTER ETA

ç
03B7
GREEK SMALL LETTER ETA

È
0398
GREEK CAPITAL LETTER THETA

è
03B8
GREEK SMALL LETTER THETA

É
0399
GREEK CAPITAL LETTER IOTA

é
03B9
GREEK SMALL LETTER IOTA

Ê
039A
GREEK CAPITAL LETTER KAPPA

ê
03BA
GREEK SMALL LETTER KAPPA

Ë
039B
GREEK CAPITAL LETTER LAMBDA

ë
03BB
GREEK SMALL LETTER LAMBDA

Ì
039C
GREEK CAPITAL LETTER MU

ì
03BC
GREEK SMALL LETTER MU

Í
039D
GREEK CAPITAL LETTER NU

í
03BD
GREEK SMALL LETTER NU

Î
039E
GREEK CAPITAL LETTER XI

î
03BE
GREEK SMALL LETTER XI

Ï
039F
GREEK CAPITAL LETTER OMICRON

ï
03BF
GREEK SMALL LETTER OMICRON

Ð
03A0
GREEK CAPITAL LETTER PI

ð
03C0
GREEK SMALL LETTER PI

Ñ
03A1
GREEK CAPITAL LETTER RHO

ñ
03C1
GREEK SMALL LETTER RHO

03A2
(This code position shall not be used)

Ó
03A3
GREEK CAPITAL LETTER SIGMA

ò
03C2
GREEK SMALL LETTER FINAL SIGMA

ó
03C3
GREEK SMALL LETTER SIGMAL

Ô
03A4
GREEK CAPITAL LETTER TAU

ô
03C4
GREEK SMALL LETTER TAU

Õ
03A5
GREEK CAPITAL LETTER UPSILON

õ
03C5
GREEK SMALL LETTER UPSILON

Ö
03A6
GREEK CAPITAL LETTER PHI

ö
03C6
GREEK SMALL LETTER PHI

×
03A7
GREEK CAPITAL LETTER CHI

÷
03C7
GREEK SMALL LETTER CHI

Ø
03A8
GREEK CAPITAL LETTER PSI

ø
03C8
GREEK SMALL LETTER PSI

Ù
03A9
GREEK CAPITAL LETTER OMEGA

ù
03C9
GREEK SMALL LETTER OMEGA

Ò
02BC
(Spacing) MODIFIER LETTER APOSTROPHE

Combining Diacriticals

Definitions

collating-symbol
generic description
U #
Class
Unicode Description

<SMO>
smooth breathing
0313
230
COMBINING COMMA ABOVE (GREEK NON-SPACING PSILI PNEUMATA) = smooth breathing

<ROU>
rough breathing
0314
230
COMBINING REVERSED COMMA ABOVE (GREEK NON-SPACING DASIA PNEUMATA) = rough breathing

<DIA>
diaresis
0308
230
COMBINING DIAERESIS (VER 2)

<IOT>
iota subscript
0345
220
COMBINING GREEK YPOGEGRAMMENI

<ACA>
acute accent
0301
230
NON-SPACING ACUTE

<GRA>
grave accent
0300
230
NON-SPACING GRAVE

<CIR>
circumflex accent
0342
230
COMBINING GREEK PERISOMENI

Sorted in Order and Arranged by the Inside-Out Rule.

Sort Order
Unicode Numbers

Combining Item(s)

0
0308

<DIA>

1
0313

<SMO>

2
0308
0313

<DIA>;<SMO>

3
0313
0301

<SMO>;<ACA>

4
0308
0313
0301

<DIA>;<SMO>;<ACA>

5
0313
0300

<SMO>;<GRA>

6
0308
0313
0300

<DIA>;<SMO>;<GRA>

7
0313
0342

<SMO>;<CIR>

8
0308
0313
0342

<DIA>;<SMO>;<CIR>

9
0313
0342
0345

<SMO>;<ACA>;<IOT>

10
0313
0300
0345

<SMO>;<GRA>;<IOT>

11
0313
0342
0345

<SMO>;<CIR>;<IOT>

12
0313
0345

<SMO>;<IOT>

13
0314

<ROU>

14
0308
0314

<DIA>;<ROU>

15
0314
0345

<ROU>;<IOT>

16
0314
0301

<ROU>;<ACA>

17
0308
0314
0301

<DIA>;<ROU>;<ACA>

18
0314
0301
0345

<ROU>;<ACA>;<IOT>

19
0314
0300

<ROU>;<GRA>

20
0314
0300
0308

<DIA>;<ROU>;<GRA>

21
0314
0300
0345

<ROU>;<GRA>;<IOT>

22
0345

<IOT>

23
0314
0342

<ROU>;<CIR>

24
0308
0314
0342

<DIA>;<ROU>;<CIR>

25
0314
0342
0345

<ROU>;<CIR>;<IOT>

26
0301

<ACA>

27
0308
0301

<DIA>;<ACA>

28
0301
0345

<ACA>;<IOT>

29
0300

<GRA>

30
0308
0300

<DIA>;<GRA>

31
0300
0345

<GRA>;<IOT>

32
0342

<CIR>

33
0308
0342

<CIR>;<DIA>

34
0342
0345

<CIR>;<IOT>

Hebrew

When comparing Ancient Hebrew Words the basic algorithm for Hebrew would be:

1. Change both Ancient Hebrew Unicode strings to their fully decomposed forms.

2. Compare the base letters in two Ancient Hebrew strings using the Base Letters table to decide the order if corresponding letters are different.

3. Compare punctuation by putting punctuation after all base characters but using the order in the punctuation table for comparing two punctuation characters within the Hebrew range.

4. If the two Ancient Hebrew words are still equal after step two, compare the HEBREW POINT SIN and HEBREW POINT SHIN on the HEBREW LETTER SHIN from the beginning of the word to the end, using the Sin Dot and Shin Dot sort order table to decide in order in cases where these two points differ.

5. If the two Ancient Hebrew words are still equal after step three, compare the vowels on the base letters from the beginning of the word to the end, using the Vowels sort order table to decide the order in cases where the vowels differ.

6. If the two Ancient Hebrew words are still equal after step four, compare the existence/nonexistence of any HEBREW POINT DAGESH on the beginning of the word to the end, using the dagesh table to see where the words differ. Base characters which contain a dagesh are greater than the same base character without the dagesh.

7. If the two Ancient Hebrew words are still equal after step five, compare the diacritics on the base characters from the beginning of the word to the end, using the Diacritic table to decide the sort order.

8. If the two Ancient Hebrew words are still equal after step six, compare the accents on the base characters from the beginning of the word to the end, using the Accent table to decide the sort order.

Base Letter

 (There is no Compare Case function).

Sort Order
Name

U#
Unicode Name

(Based on ISO 8859-8)

1.
Aleph

05D0
HEBREW LETTER ALEF

2.
Bet

05D1
HEBREW LETTER BET

3.
Gimel

05D2
HEBREW LETTER GIMEL

4.
Daleth

05D3
HEBREW LETTER DALET

5.
He

05D4
HEBREW LETTER HE

6.
Waw

05D5
HEBREW LETTER VAV

7.
Zayin

05D6
HEBREW LETTER ZAYIN

8.
Heth

05D7
HEBREW LETTER HET

9.
Tet

05D8
HEBREW LETTER TET

10.
Yod

05D9
HEBREW LETTER YOD

11.
Kaph-final

05DA
HEBREW LETTER FINAL KAF

12.
Kaph-initial/medial

05DB
HEBREW LETTER KAF

13.
Lamed

05DC
HEBREW LETTER LAMED

14.
Mem-final

05DD
HEBREW LETTER FINAL MEM

15.
Mem-initial/medial

05DE
HEBREW LETTER MEM

16.
Nun-final

05DF
HEBREW LETTER FINAL NUN

17.
Nun-initial/medial

05E0
HEBREW LETTER NUN

18.
Samek

05E1
HEBREW LETTER SAMEKH

19.
Ayin

05E2
HEBREW LETTER AYIN

20.
Pe-final

05E3
HEBREW LETTER FINAL PE

21.
Pe-initial/medial

05E4
HEBREW LETTER PE

22.
Tsade-final

05E5
HEBREW LETTER FINAL TSADI

23.
Tsade-initial/medial

05E6
HEBREW LETTER TSADI

24.
Qoph

05E7
HEBREW LETTER QOF

25.
Resh

05E8
HEBREW LETTER RESH

27.
Shin

05E9
HEBREW LETTER SHIN

28.
Taw

05EA
HEBREW LETTER TAV

Sin Dot and Shin Dot

1.
Sin dot

05C2
HEBREW POINT SIN DOT
Mn;25;R;;;;;N;;;;;

2.
Shin dot

05C1
HEBREW POINT SHIN DOT
Mn;25;R;;;;;N;;;;;

Vowels

VSO
Unicode Description
Unicode #

1
HEBREW POINT QAMATS
05B8

2
HEBREW POINT PATAH
05B7

3
HEBREW POINT HATAF PATAH
05B2

4
HEBREW POINT TSERE
05B5

5
HEBREW POINT SEGOL
05B6

6
HEBREW POINT HATAF SEGOL
05B1

7
HEBREW POINT HIRIQ
05B4

8
HEBREW POINT HOLAM
05B9

9
HEBREW POINT HATAF QAMATS
05B3

10
HEBREW POINT QUBUTS
05BB

11
HEBREW POINT SHEVA
05B0

Dagesh

05BC
HEBREW POINT DAGESH OR MAPIQ
Middle
Mn;21
R;;;;;N;HEBREW POINT DAGESH;;;;

The sorting of the dagesh into a priority sort order is unnecessary as its existence/non existence is of importance.

Diacritics

05BD
HEBREW POINT METEG = SILUQ
Below
Mn;22
R;;;;;N;;;;;

FB1E
HEBREW POINT JUDEO-SPANISH VARIKA
Above
Mn;26
R;;;;;N;HEBREW POINT VARIKA;;;;

05BF
HEBREW POINT RAFE
Above
Mn;23
R;;;;;N;;;;;

The sorting of the accents into a priority sort order is unnecessary. Existence/non existence of any item in this class is of importance.

Accents

Accents are defined by one or more of the following attributes on a word from the Unicode section entitled “Cantillation Marks and Accents.”

U #
Unicode Descriptions
Combining Location
Combining

Class

0591
HEBREW ACCENT ETNAHTA
Below
Mn;220
R;;;;;N;;;;;

0592
HEBREW ACCENT SEGOL
Above
Mn;230
R;;;;;N;;;;;

0593
HEBREW ACCENT SHALSHELET
Above
Mn;230
R;;;;;N;;;;;

0594
HEBREW ACCENT ZAQEF QATAN
Above
Mn;230
R;;;;;N;;;;;

0595
HEBREW ACCENT ZAQEF GADOL
Above
Mn;230
R;;;;;N;;;;;

0596
HEBREW ACCENT TIPEHA
Below
Mn;220
R;;;;;N;;;;;

0597
HEBREW ACCENT REVIA
Above
Mn;230
R;;;;;N;;;;;

0598
HEBREW ACCENT ZARQA
Above
Mn;230
R;;;;;N;;;;;

0599
HEBREW ACCENT PASHTA
Above
Mn;230
R;;;;;N;;;;;

059A
HEBREW ACCENT YETIV
Below Right
Mn;222
R;;;;;N;;;;;

059B
HEBREW ACCENT TEVIR
Below
Mn;220
R;;;;;N;;;;;

059C
HEBREW ACCENT GERESH
Above
Mn;230
R;;;;;N;;;;;

059D
HEBREW ACCENT GERESH MUQDAM
Above
Mn;230
R;;;;;N;;;;;

059E
HEBREW ACCENT GERSHAYIM
Above
Mn;230
R;;;;;N;;;;;

059F
HEBREW ACCENT QARNEY PARA
Above
Mn;230
R;;;;;N;;;;;

05A0
HEBREW ACCENT TELISHA GEDOLA
Above
Mn;230
R;;;;;N;;;;;

05A1
HEBREW ACCENT PAZER
Above
Mn;230
R;;;;;N;;;;;

05A3
HEBREW ACCENT MUNAH
Below
Mn;220
R;;;;;N;;;;;

05A4
HEBREW ACCENT MAHAPAKH
Below
Mn;220
R;;;;;N;;;;;

05A5
HEBREW ACCENT MERKHA
Below
Mn;220
R;;;;;N;;;;;

05A6
HEBREW ACCENT MERKHA KEFULA
Below
Mn;220
R;;;;;N;;;;;

05A7
HEBREW ACCENT DARGA
Below
Mn;220
R;;;;;N;;;;;

05A8
HEBREW ACCENT QADMA
Above
Mn;230
R;;;;;N;;;;;

05A9
HEBREW ACCENT TELISHA QETANA
Above
Mn;230
R;;;;;N;;;;;

05AA
HEBREW ACCENT YERAH BEN YOMO
Below
Mn;220
R;;;;;N;;;;;

05AB
HEBREW ACCENT OLE
Above
Mn;230
R;;;;;N;;;;;

05AC
HEBREW ACCENT ILUY
Above
Mn;230
R;;;;;N;;;;;

05AD
HEBREW ACCENT DEHI
Below Right
Mn;222
R;;;;;N;;;;;

05AE
HEBREW ACCENT ZINOR
Above
Mn;230
R;;;;;N;;;;;

05AF
HEBREW MARK MASORA CIRCLE
Above
Mn;230
R;;;;;N;;;;;

05C4
HEBREW MARK UPPER DOT

Mn;230
R;;;;;N;;;;;

Existence/non existence of any item in this class is of importance.

Punctuation

05BE
HEBREW PUNCTUATION MAQAF
left
Po;0;R;;;;;N;;;;;

05C0
HEBREW PUNCTUATION PASEQ
left
Po;0;R;;;;;N;HEBREW POINT PASEQ;;;;

05C3
HEBREW PUNCTUATION SOF PASUQ
left
Po;0;R;;;;;N;;;;;

05F3
HEBREW PUNCTUATION GERESH

Po;0;R;;;;;N;;;;;

05F4
HEBREW PUNCTUATION GERSHAYIM

Po;0;R;;;;;N;;;;;

Revision History

This page may be omitted in official distributions of this document

03/01/95 - 0.4 CAR

03/07/95 - 0.5 CAR
Add PublisherID and BookID to required header fields

Add a way to turn Bible reference parsing on and off

Add parser specification for Conversion Program

04/06/95 - 0.6 CAR
Add SyncTo; Add Level and EndViewableText

corrections, clarifications, add CAPTIONS.TXT

LinkToMM uses file name, not name

Divide up into subdocuments

04/20/95 - 0.7 CAR
corrections, more Conversion Program detail

PubID, BookID in all CP files

Move Glossary sections to end; add GLOSSARY.IDX; corrections

04/22/95 - 0.8 CAR
More explanation of VERSES.IDX

05/19/95
Use string length instead of null termination.

Discuss difference between embedded bitmaps and LinkToMM.

Add publisher ID with each book in VOLUME.INI

Changes to SECTIONS.IDX.

Add block length to VIEWABLE.IDX

Expand definition of appocrypha and book numbers

Add viewable block “0” for header information

Add dataset name to VOLUME.INI

Add forward compatibility flags in Version Record

Consistency of use of “pointer”, “offset”, “index”

06/07/95 - 0.81 CAR
Minor change to order of Level Entries in SECTIONS.IDX

This version distributed to STEP members at Chicago meeting

09/01/95 - 0.85 CAR
Several changes:

ConcordanceOff and ConcordanceOn

Date sync

Add title to LinkToMM; remove CAPTIONS.TXT

Add glossary entries to SECTIONS.IDX and VIEWABLE.IDX

Correction to xSYNC file formats

2-byte book, chapter, verse numbers in VERSES.IDX and VSYNC.IDX

Add concept of “set of books” for commentary series

09/20/05 - 0.86 CAR
Add first, last books, sync point list length to VSYNC.IDX

Add encryption info in Version Records

Add LinkToBible

11/16/95 - 0.87 CAR
Trying to get this to the point where I can distribute it again!!

Add info on \steplink to BOOK.DAT

Corrected a minor error in one of the examples of the verse reference parser

Changed Index into Chapter Entries and Verse Entries in VERSES.IDX to a pointer

Add compressed length to VIEWABLE.IDX

Add compression type to VIEWABLE.IDX

Make Version Records 128 bytes

Add SyncType to VOLUME.INI

Add descriptive info to VOLUME.INI

Update the description of \steplink in BOOK.DAT

Clarify “glossary” vs. “non-glossary” entries in SECTIONS and VIEWABLE

Added Translation Numbers and Bible Contents

Better description of BOOK.DAT; add Version Record and Header Control Words

Add ConcordanceOff and ConcordanceOn to description of BOOK.DAT

Add length of fixed length blocks throughout to allow growth

Add Modified By to Version Record

Change abbreviation of Judges from Jud to Judg

Removed Nhm as an abbreviation of Nehemiah

Exclude Philip as an abbreviation of Philipians

Added Add Est, AddEst, Let Jer, LetJer, Sirach and Azariah to books

12/12/95 - 0.88 CAR
Changed concordance format for speed

Prayer of Manasseh

04/27/96 - 0.9 CAR
Updated to 0.9 as shipped in QuickVerse Library 1.0

Split into “publisher” and “programmer” specs

Hyphenated words are one word

Non-English in Unicode™

Add RTF for ConcordanceOff and ConcordanceOn

Add language tags

Add RTF for Level control words

Use backslash instead of comma in LinkToBook

Make backslash illegal in level names

Outgoing sync info in SECTIONS.IDX

Get rid of book 71.

Move Revision History to the end.

05/06/96

Formatting

10/09/96 - 0.91 CAR

Set Info in VOLUME.INI

EditionID

11/15/96

Typos and changes, still 0.91

02/08/97

Grammar, added compression as appendix. Preparation for posting on bsisg.com.

02/20/97

Remove Enoch and 1 Enoch. We’ve never recognized them. Add Canticles as an alias for Song of Solomon.

09/11/97 – 1.0 RAJ

Fixed errors and updated spec for languages and compression of concord.idx and verses.idx

04/27/98 – 1.1
 JAW

Review of 1.0 and 1.1 changes

Added appendices B through E

05/14/98 – CAR

Reviewing changes prior to formal release of 1.1

Added book numbers 101 and 102. Added ICB and NLT to table of books.

05/05/98

Updated Appendices B and D.

Add NLT and some asterisks to list of translations

Add Appendix F

�EMBED Word.Picture.8���

29

_949824746.doc
[image: image1.png]

